Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática

Conjectura de De Giorgi em dimensões 2 e 3

por

Ivaldo Tributino de Sousa

João Pessoa - PB

[†] O presente trabalho foi realizado com apoio do CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática

Conjectura de De Giorgi em dimensões 2 e 3

por

Ivaldo tributino de Sousa

sob orientação do

Prof. Dr. João Marcos Bezerra do Ó

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCEN - UFPB, como requisito parcial para obtenção do título de Mestre em Matemática.

João Pessoa - PB Março/2012

Conjectura de De Giorgi em dimensões 2 e 3

por

Ivaldo Tributino de Sousa

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCEN - UFPB, como requisito parcial para obtenção do título de Mestre em Matemática.

Área de concentração: Análise.

Aprovada por:

Prof. Dr. João Marcos Bezerra do Ó - UFPB (Orientador)

Prof. Dr. Olímpio Hiroshi Miyagaki - UFJF

Prof. Dr. Marco Aurelio Soares Souto - UFCG

Prof. Dr. Uberlandio Batista Severo - UFPB (Suplente)

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática

Março/2012

Agradecimentos

- Agradeço principalmente à Deus por me permitir chegar até aqui.
- Ao meu Pai, José Valdir Freire de Sousa e minha prima Maria que me deram todo apoio para vir estudar em João Pessoa.
- A todos os meus amigos e colegas da pós-graduação. Em particular à Ana Karine Rodrigues de Oliveira, que esteve sempre ao meu lado nos momentos difíceis e agradáveis, Gustavo da Silva Araújo e José Carlos de Albuquerque Melo Júnior, por terem me ajudado na correção e formatação deste trabalho.
- A todos os professores que estiveram comigo durante esta caminhada.
- Ao Prof. Dr. João Marcos Bezerra do Ó, por ter aceitado me orientar e por ter apresentado o belo tema deste trabalho.
- Aos que compuseram minha banca, professores Olímpio Hiroshi Miyagaki e Marco Aurelio Soares Souto.
- Por fim, a todos que de forma direta ou indireta contribuíram para a realização deste trabalho.

"É preciso pensar para acertar, calar para resistir e agir para vencer."

Renato Keld

Resumo

Este trabalho se preocupa com o estudo de soluções limitadas de equações elípticas semilineares $\Delta u - F'(u) = 0$ em todo espaço \mathbb{R}^n , sob o pressuposto que u é monótona em uma direção, digamos $\partial u/\partial x_n > 0$ em \mathbb{R}^n . O objetivo é estabelecer o caráter unidimensional ou simetria de u, ou seja, que u depende apenas de uma variável ou equivalentemente, que os conjuntos de nível de u são hiperplanos. Este tipo de questão da simetria foi levantada por De Giorgi em 1978 (ver [6]), que fez a seguinte conjectura:

Conjectura Suponha que $u \in C^2(\mathbb{R}^n)$ é solução da equação

$$\Delta u + u - u^3 = 0$$

satisfazendo

$$|u(x)| \le 1$$
 $e \frac{\partial u}{\partial x_n} > 0$ $em \ todo \ \mathbb{R}^n$.

Então os conjuntos de nível de u são hiperplanos.

Mostraremos que uma versão forte da conjectura de De Giorgi é de fato verdade em dimensão 2 e 3 usando somente técnicas da teoria linear desenvolvida por Berestychi, Caffarelli e Nirenberg [5] em um dos seus artigos sobre as propriedades qualitativas de equações elípticas semilineares.

Palavras-chave: Conjectura de De Giorgi, Equações elípticas semilineares, Hiperplanos.

Abstract

This word is concerned with the study of bounded solutions of semilinear elliptic equations $\Delta u - F'(u) = 0$ in the whole space \mathbb{R}^n , under the assumption that u is monotone in one direction, say, $\partial u/\partial x_n > 0$ em \mathbb{R}^n . The goal is to establish the one-dimensional character or symmetry of u, namely, that u only depends on one variable or, equivalently, that the level sets of u are hyperplanos. This type of symmetry question was raised by de Giorgi in 1978 (see [6]), who made the following conjecture:

Conjecture Suppose that $u \in C^2(\mathbb{R}^n)$ is solution of the equation

$$\Delta u + u - u^3 = 0$$

satisfying

$$|u(x)| \le 1$$
 and $\frac{\partial u}{\partial x_n} > 0$ in the whole \mathbb{R}^n .

Then the level sets of u must be hyperplanes.

We show a stronger version of De Giorgi's conjecture is indeed true in dimension 2 and 3 using some techniques in the linear theory developed by Berestychi, Caffarelli and Nirenberg [5] in one of their papers on qualitative properties of solutions of semilinear elliptic equations.

Keywords: De Giorgi's conjecture, Semilinear elliptic equations, Hyperplanos.

Sumário

In	Introdução			
N	otações	xi		
1	A conjectura de De Giorgi em dimensão 2 1.1 Contra-exemplo			
2	A conjectura de De Giorgi em dimensão 3 2.1 Estimativa de Energia			
A	ApêndiceA.1 Resultados Auxiliares	45		
Re	eferências Bibliográficas	51		

Introdução

Este trabalho se preocupa com o estudo de soluções limitadas de equações elípticas semilineares $\Delta u - F'(u) = 0$ em todo espaço \mathbb{R}^n , sob o pressuposto que u é monótona em uma direção, digamos $\partial u/\partial x_n > 0$ em \mathbb{R}^n . O objetivo é estabelecer o caráter unidimensional ou simetria de u, ou seja, que u depende apenas de uma variável ou equivalentemente, que os conjuntos de nível de u são hiperplanos. Este tipo de questão da simetria foi levantada por De Giorgi em 1978 (ver [6]), que fez a seguinte conjectura:

Conjectura Suponha que $u \in C^2(\mathbb{R}^n)$ é solução da equação

$$\Delta u + u - u^3 = 0$$

satisfazendo

$$|u(x)| \le 1$$
 $e^{-\frac{\partial u}{\partial x_n}} > 0$ $em \ todo \ \mathbb{R}^n$.

Então os conjuntos de nível de u são hiperplanos.

Para n=2 esta conjectura foi provado por Ghoussoub e Gui em [9] e para n=3 por L. Ambrosio e X. Cabré em [1]. Tanto para n=2 e n=3 a prova usa somente técnicas da teoria linear desenvolvida por Berestychi, Caffarelli e Nirenberg [5] em um dos seus artigos sobre as propriedades qualitativas de equações elípticas semilineares.

Este trabalho está dividido em dois capítulos, como segue:

Iniciamos o **Capítulo 1** mostrando a veracidade, em dimensão 1, 2 e 3, da Conjectura (A) enunciadas abaixo (para n=3 com suposição adicional) e mostraremos um contra-exemplo que nos garante que as conjecturas são falsas para $n \geq 7$.

Conjectura (A) Seja $L = -\Delta - V$ um operador de Shrödinger em \mathbb{R}^n sendo V um potencial suave e limitado. Suponha que u é uma solução de Lu = 0, em todo

 \mathbb{R}^n , que muda de sinal, então L tem espectro negativo, isto é,

$$\lambda_1(\mathbb{R}^n) := \inf \left\{ \frac{\int_{\mathbb{R}^n} (|\nabla \psi|^2 - V|\psi|^2) dx}{\int_{\mathbb{R}^n} |\psi|^2 dx} : \psi \in C_c^{\infty}(\mathbb{R}^n) \setminus \{0\} \right\} < 0$$

Conjectura (B) Suponha $\varphi(x) > 0$ para todo $x \in \mathbb{R}^n$. Então qualquer função $u \in C^2(\mathbb{R}^n)$ tal que φu é limitada em \mathbb{R}^n e satisfaz $\nabla \cdot (\varphi^2 \nabla u) = \sum_{i=1}^n (\varphi^2 u_{x_i})_{x_i} = 0$ é necessariamente constante.

Concluímos o **Capítulo 1**, mostrando que a conjectura De Giorgi é de fato verdade em dimensão 2 e em dimensão 3, com a hipótese adicional que a solução converge uniformemente para ± 1 quando $x_3 \to \pm \infty$. Em outras palavras, iremos mostrar o seguinte:

Teorema 1.2.1 Seja $F \in C^2(\mathbb{R})$. Suponha u uma solução inteira e limitado de

$$\Delta u - F'(u(x)) = 0$$
, para $x = (x_1, x_2) \in \mathbb{R}^2$,

tal que $\partial u/\partial x_2 \geq 0$ em todo \mathbb{R}^2 . Então u é da forma $u(x) = g(ax_1 + bx_2)$, para $g \in C^2(\mathbb{R})$ com a, b constantes apropriadas.

Teorema 1.2.2 Seja $F \in C^2(\mathbb{R})$ uma função não negativa com $F(\pm 1) = 1$ e $F''(\pm 1) \ge \mu > 0$. Suponha u uma solução de

$$\Delta u - F'(u(x)) = 0$$
 para $x = (x', x_n) \in \mathbb{R}^n$

e $u(x',x_n)$ converge uniformemente para ± 1 quando $x_n \to \pm \infty$. Então,

- a) Para todo $x \in \mathbb{R}^n$, $\frac{\partial u}{\partial x_n} > 0$ e $|\nabla u(x)| \leq Ce^{-\alpha|x_n|}$ onde C e α são constantes positivas.
- b) Se a dimensão é 2 ou 3, então u é necessariamente da forma $u(x', x_n) = g(x_n)$, onde g(t) é solução da equação

$$g''(t) = F'(g(t))$$
 e $\lim_{t \to +\infty} g(t) = \pm 1$ $para$ $t \in \mathbb{R}$.

Em seguida, no Capítulo 2, dividimos em duas seções;

A seção 2.1 trata da conjectura de De Giorgi para n=3, com a hipótese adicional

$$\lim_{x_3 \to \pm \infty} u(x', x_3) = \pm 1 \quad \text{para todo} \quad x' \in \mathbb{R}^{n-1}.$$

Aqui, os limites não são assumidos uniformes em $x' \in \mathbb{R}^{n-1}$.

Nessa prova da conjectura de De Giorgi em dimensão 3 é usada um resultado chave de estimativa de energia que nos permitirá aplicar um tipo de Teorema de Liouville (Proposição 2.1.2).

Já na seção 2.2 estabeleceremos para n=3 a conjectura de De Giorgi na forma apresentada em [6]. Ou seja, não assumiremos que $u \to \pm 1$ quando $x_3 \to \pm \infty$. Este resultado aplica-se a uma classe de equações não lineares, em particular o caso do modelo $F'(u) = u^3 - u$.

Por fim, no Apêndice A, enunciamos os principais resultados utilizados ao longo do nosso trabalho.

Notações

Notações Gerais

B(x,r)	bola de centro :	r o raio	r
D(x,T)	doia de centro :	x e raio	Τ,

$$\overline{B(x,r)}$$
 bola fechada de centro x e raio r ,

$$|A|$$
 medida de Lebesque de um conjunto A

$$\omega_n$$
 volume da bola unitária $B(0,r)$ em \mathbb{R}^n

$$u_{|A}$$
 restrição da função u ao conjunto A

$$\nabla \cdot u$$
 divergente de u

$$\nabla u = (u_{x_i}, ..., u_{x_n})$$
 gradiente de u

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i}$$
laplaciano de u

$$\langle a,b\rangle$$
ou $a\cdot b$ denota produto interno de a e b

$$C, C_1, C_2, C_3, \dots$$
 denotam constantes positivas

$$\Omega \subset \mathbb{R}^n$$
 aberto e limitado

$$\overline{\Omega}$$
 fecho do conjunto Ω

 $\partial\Omega$

fronteira de Ω

 $\limsup_{n\to\infty} f$

limite superior da função f quando $n \to \infty$

 $\liminf_{n\to\infty} f$

limite inferior da função f quando $n \to \infty$

indica final de demonstração

Espaços de Funções

$$L^p(\Omega)=\{u \ \text{ mensurável sobre } \ \Omega \ \text{ e } \ \int_{\Omega}|u|^pdx<\infty\}, 1\leq p\leq \infty$$

$$L^{\infty}(\Omega) = \{u \text{ mensurável sobre } \Omega \text{ e existe } C \text{ tal que } |u(x)| \leq C \text{ q.t.p sobre } \Omega\}$$

 $C_{\rm c}(\Omega)$ funções contínuas com suporte compacto em Ω

 $C^K(\Omega)$ funções K vezes diferenciável sobre $\Omega, K \in \mathbb{N}$

$$C^{\infty}(\Omega) = \bigcap_{k \geq 0} C^K(\Omega)$$

$$C_{\rm c}^K(\Omega) = C^K(\Omega) \cap C_0(\Omega)$$

$$C_c^{\infty}(\Omega) = C^{\infty}(\Omega) \cap C_0(\Omega)$$

$$W^{1,p}(\Omega) = \left\{ u \in L^p(\Omega) \,\middle|\, \begin{array}{l} \exists \ g_i, g_2, ..., g_n \in L^p(\omega) \ \text{tais que} \\ \int_{\Omega} u \varphi_{x_i} dx = -\int_{\Omega} g_i \varphi \ dx, \forall \varphi \in C_c^{\infty}, \ \forall i = 1, ..., n \end{array} \right\},$$

$$1 \leq p \leq \infty$$

 $W^{1,p}_0(\Omega)$ o completamento de $C^1_{\rm c}(\Omega),$ na norma de $W^{1,p}(\Omega),\ 1\leq p<\infty$

$$||u||_{C(\overline{\Omega})} = \sup_{\Omega} |u|$$

$$||u||_{L^{\infty}(\Omega)} = \sup \operatorname{ess} |u(x)|, \ x \in \Omega$$

$$[u]_{C^{\alpha}(\overline{\Omega}))} = \sup_{x,y \in \Omega; x \neq y} \left\{ \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \right\}$$

$$||u||_{C^{\alpha}(\overline{\Omega})} = ||u||_{C(\overline{\Omega})} + [u]_{C^{\alpha}(\overline{\Omega})}$$

$$||u||_{C^{k,\gamma}\overline{\Omega})} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C(\overline{\Omega})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{\gamma}(\overline{\Omega})}$$
$$||u||_{L^{p}(\Omega)} = \left(\int_{\Omega} |u|^{p}\right)^{\frac{1}{p}}$$
$$||u||_{W^{1,p}(\Omega)} = \left(||u||_{L^{p}(\Omega)} + \sum_{i=1}^{n} ||u_{x_{i}}||_{L^{p}(\Omega)}\right)$$

 $\|u\|=\|\nabla u\|_{L^p(\Omega)}$ norma do espaço $W_0^{1,p}$, equivalente a $\|u\|_{W^{1,p}(\Omega)}$. (Uma vez que Ω é limitado)

Capítulo 1

A conjectura de De Giorgi em dimensão 2

Neste capítulo, mostraremos que a conjectura de De Giorgi é de fato verdade em dimensão 2, enquanto que em dimensão 3 é verdade se a solução converge uniformemente para ± 1 quando $x_3 \to \pm \infty$. Começamos este capítulo mostrando através de um exemplo que o método utilizado para esta verificação não é válida para $n \geq 7$.

1.1 Contra-exemplo

Nesta seção, considere $L = -\Delta - V = 0$ um operator de Schrödinger em \mathbb{R}^n , onde V é um potencial suave e limitado e, associado a L, o funcional energia

$$\mathcal{L}(\psi) = \frac{\int_{\mathbb{R}^n} (|\nabla \psi|^2 - V|\psi|^2) dx}{\int_{\mathbb{R}^n} |\psi|^2 dx}; \quad \text{onde} \quad \psi \in H^1(\mathbb{R}^n).$$

Seja

$$\lambda_1(\mathbb{R}^n) = \inf \{ \mathcal{L}(u); u \in C_c^{\infty}(\mathbb{R}^n) \setminus \{0\} \}.$$

Começaremos verificando que $\lambda_1(\mathbb{R}^2) \leq 0$ e, em seguida, que $\lambda_1(\mathbb{R}^2) < 0$ se, e somente se, Lu = 0 não possui solução positiva. Além disso provaremos a veracidade em dimensão 1, 2 e 3 das conjecturas (A) e (B)(para n = 3 com suposição adicional) e mostraremos um contra-exemplo que nos garante que as mesmas são falsas para $n \geq 7$.

Lema 1.1.1 Suponhamos que existe $u \in C^2$ solução limitada de Lu = 0, então $\lambda_1(\mathbb{R}^n) \leq 0$.

Demonstração: Seja $l: \mathbb{R}^+ \longrightarrow \mathbb{R}$ uma função suave, tal que

$$l(t) = \begin{cases} 1, & \text{se } 0 \le t \le 1\\ 0, & \text{se } t > 2 \end{cases}$$

e $|l'(t)| \leq 2$. Para R > 0, definamos em \mathbb{R}^n a função $\xi_R(x) = l(|x|/R)$.

Temos,

$$|\nabla(\xi_R u)|^2 = \sum_{i=1}^n [(\xi_R u)_{x_i}]^2$$

$$= \sum_{i=1}^n [(\xi_R)_{x_i} u + \xi_R u_{x_i}]^2$$

$$= \sum_{i=1}^n [(\xi_R)_{x_i} u]^2 + 2u_{x_i} u(\xi_R)_{x_i} \xi_R + [\xi_R u_{x_i}]^2$$

$$= u^2 |\nabla \xi_R|^2 + \sum_{i=1}^n u_{x_i} [(\xi_R)^2 u]_{x_i}$$

$$= u^2 |\nabla \xi_R|^2 + \nabla u \cdot \nabla [(\xi_R)^2 u].$$

Integrando por partes, obtemos

$$\int_{\mathbb{R}^n} |\nabla(\xi_R u)|^2 dx = \int_{\mathbb{R}^n} u^2 |\nabla \xi_R|^2 dx - \int_{\mathbb{R}^n} (\xi_R)^2 u \Delta u \ dx.$$

Somando com $-\int_{\mathbb{R}^n}V(\xi_Ru)^2~dx$ em ambos os membros da igualdade e sendo u solução da equação $\Delta u-Vu=0$, vemos que

$$\int_{\mathbb{R}^n} (|\nabla (\xi_R u)|^2 - V(\xi_R u)^2) \ dx = \int_{\mathbb{R}^n} u^2 |\nabla \xi_R|^2 dx.$$

Pela definição de ξ_R , temos

$$\int_{\mathbb{R}^n} (|\nabla(\xi_R u)|^2 - V(\xi_R u)^2) \ dx = \int_{B_{2R} \setminus B_R} u^2 |\nabla \xi_R|^2 dx,$$

onde $B_R = B(0, R)$.

Temos,

$$|\nabla(\xi_R)|^2 = \sum_{i=1}^n [(\xi_R)_{x_i}]^2$$

$$= \sum_{i=1}^n \left[l \left(\frac{|x|}{R} \right)_{x_i} \right]^2$$

$$= \sum_{i=1}^n l' \left(\frac{|x|}{R} \right)^2 \frac{x_i^2}{R^2 |x|^2}$$

$$\leq \frac{4}{R^2}.$$

Segue que

$$\int_{\mathbb{R}^n} (|\nabla(\xi_R u)|^2 - V(\xi_R u)^2) \ dx \le \frac{4}{R^2} \int_{B_{2R} \setminus B_R} u^2 \ dx. \tag{1.1}$$

Note que

$$\int_{\mathbb{R}^n} |\xi_R u|^2 dx = \int_{B_R} u^2 dx + \int_{B_2 R \backslash B_R} |\xi_R u|^2 dx$$

e, portanto,

$$\int_{B_R} u^2 dx \le \int_{\mathbb{R}^n} |\xi_R u|^2 dx. \tag{1.2}$$

Por (1.1) e (1.2), podemos concluir que

$$\mathcal{L}(\xi_R u) = \frac{\int_{\mathbb{R}^n} (|\nabla \xi_R u|^2 + V(\xi_R u)^2) dx}{\int_{\mathbb{R}^n} |\xi_R u|^2 dx} \le \frac{\frac{4}{R^2} \int_{B_{2R} \setminus B_R} u^2 dx}{\int_{B_R} u^2 dx}$$
(1.3)

Seja $K(R) = \int_{B_R} u^2 dx$ e

$$\alpha(R) := \frac{K(2R) - K(R)}{R^2 K(R)}.$$

Mostraremos que

$$\inf_{R \to +\infty} \alpha(R) = 0.$$

Com vista em uma contradição, suponhamos que $\alpha(R) \geq \delta > 0$ e, desta forma, que

 $K(2R) \geq \delta R^2 K(R)$. Com isso, podemos obter

$$K(2^2R) \ge \delta(2R)^2 K(2R) \ge \delta^2 2^2 R^4 K(R)$$

$$K(2^3R) \ge \delta(2^2R)^2K(2^2R) \ge \delta^3 2^6R^6K(R)$$

$$K(2^4R) > \delta(2^3R)^2K(2^3R) > \delta^4 2^{12}R^8K(R)$$

Continuando o processo, obteremos

$$K(2^m R) \ge \delta^m 2^{m(m-1)} R^{2m} K(1)$$
, para $R \ge 1$ e $m \in \mathbb{N}$.

Substituindo R por 2, obtemos

$$K(2^{m+1}) \ge \delta^m 2^{m(m+1)} K(1).$$

Agora, tomando $R=2^{m+1}$, teremos $m=\log_2\frac{R}{2}$. Substituindo na última desigualdade, temos

$$K(R) \ge (\delta R)^{\log_2 \frac{R}{2}} K(1).$$

Escolhendo R de tal forma que $(\delta R)^{\log_2 \frac{R}{2}} \leq R^n$, obteremos uma contradição, pois

$$K(R) \ge (\delta R)^{\log_2 \frac{R}{2}} K(1) > ||u||_{\infty}^2 \omega_n R^n \ge \int_{R_R} u^2 dx,$$

o que é um absurdo. Finalmente por 1.3 temos que

$$\lambda_1(\mathbb{R}^n) \leq \liminf_{R \to +\infty} \mathcal{L}(\xi_R u) = 0$$

concluindo a prova.

Na proposição a seguir mostraremos a relação entre a equação Lu = 0 possuir solução positiva e o valor do primeiro autovalor $\lambda_1(\mathbb{R}^n)$.

Proposição 1.1.1 Seja $Lu = -\Delta - V$ um operador de Schrödinger em \mathbb{R}^n , com o potencial V suave e limitado. Então $\lambda_1(\mathbb{R}^n) < 0$ se, e somente se, a equação Lu = 0 não possui solução positiva.

Demonstração: Primeiramente mostraremos que podemos tomar um par (u, μ) , autofunção e autovalor, tal que

$$\begin{cases}
-\Delta u - Vu = \mu u & \text{em} \quad B_R \\
u = 0 & \text{sobre} \quad \partial B_R
\end{cases}$$

$$(P_R)$$

Considere os funcionais $J, F: H_0^1(B_R) \longrightarrow \mathbb{R}$ definidos por

$$J = \int_{B_R} (|\nabla u|^2 - Vu^2) dx \text{ e } F(u) = \int_{B_R} u^2 dx - 1.$$

Note que $J, F \in C^1(H_0^1(B_R), \mathbb{R})$ (ver [2], Apêndice B).

Considere o vínculo

$$M := \{ u \in H_0^1(B_R) : F(u) = 0 \}.$$

Observe que $F'(u) \neq 0$ para todo $u \in M$. De fato, basta observar que dado $u \in M$, temos

$$F'(u)u = 2\int_{B_R} u^2 dx = 2 \neq 0.$$

Note também que $J\big|_M$ é limitado inferiormente, pois, sendo V limitado, existe um K>0 tal que $|V|\leq K$ para todo $x\in\mathbb{R}^n$. Logo, para $u\in M$,

$$J(u) \geq \int_{B_R} |\nabla u|^2 dx - K \int_{B_R} u^2 dx$$
$$> -K$$

Portanto, existe um $\mu \in \mathbb{R}$ tal que

$$\mu = \inf_{u \in M} J(u).$$

Então seja $(u_m) \subset M$ uma sequência minimizante, isto é,

$$J(u_m) = ||u||^2 - \int_{B_R} V u_m^2 dx \to \mu \text{ e } F(u_m) = 0.$$

Afirmação 1: O μ é atingido, ou seja, existe $u_0 \in M$ tal que $J(u_0) = \mu$.

Sendo $J(u_m)$ convergente, existe C > 0 tal que

$$\left| \|u_m\|^2 - \int_{B_R} V u_m^2 dx \right| \le C, \quad \forall m \in \mathbb{N}$$

e, portanto,

$$||u_m||^2 \le C_1, \quad \forall m \in \mathbb{N}.$$

Sendo $H_0^1(B_R)$ reflexivo, segue que existe $u_0 \in H_0^1(B_R)$ tal que, a menos de subsequência,

$$u_m \rightharpoonup u_0 \text{ em } H_0^1(B_R).$$

Desde que a norma é fracamente semicontínua inferiormente (s.c.i), temos

$$\liminf_{m \to \infty} ||u_m||^2 \ge ||u_0||^2.$$
(1.4)

Agora, usando a imersão compacta $H_0^1(B_R) \hookrightarrow L^2(B_R)$, obtemos

$$u_m \to u_0 \text{ em } L^2(B_R),$$

implicando que

$$u_m(x) \to u_0(x)$$
 q.t.p em B_R .

Pelo Teorema da Convergência Dominada de Lebesgue e por (1.4), obtemos

$$\mu \leq J(u_0) = ||u_0||^2 - \int_{B_R} V u_0^2 dx$$

$$\leq \liminf_{m \to \infty} ||u_m||^2 - \lim_{m \to \infty} \int_{B_R} V u_m^2 dx$$

$$\leq \liminf_{m \to \infty} J(u_m) = \mu,$$

mostrando que

$$J(u_0) = \mu. (1.5)$$

Desta forma, pelo Teorema dos Multiplicadores de Lagrange, existe $\beta \in \mathbb{R}$ tal que $J'(u_0) = \beta F'(u_0)$, ou seja,

$$J'(u_0)\varphi = \beta F'(u_0)\varphi, \quad \forall \varphi \in H_0^1(B_R).$$

Escolhendo $\varphi = u_0$, obtemos

$$2J(u_0) = 2\beta \int_{B_R} u_0^2 dx.$$

De onde segue que $\mu = \beta$. Com isso, temos que u_0 é solução fraca do problema (P_R) . Por regularidade (ver [Evans, L. C.] - pag 326) $u_0 \in C_0^{\infty}(B_R)$, logo u_0 é solução clássica para o problema (P_R) com $\mu = \lambda_1^R$, onde

$$\lambda_1^R = \inf \left\{ \frac{\int_{B_R} (|\nabla u|^2 - Vu^2) dx}{\int_{B_R} u^2 dx} : u \in C_c^{\infty}(B_R) \setminus \{0\} \right\}.$$

Afirmação 2: As autofunções u_R associadas ao autovalor λ_1^R tem sinal definido, isto é, podemos supor $u_R > 0$.

Note que podemos supor $u_R \ge 0$, pois se u_R satisfaz (1.5), temos que $|u_R|$ também satisfaz. Assim, vamos mostrar que

$$u_R(x) > 0, \quad \forall x \in B_R.$$

Suponhamos que exista $x_0 \in B_R$ tal que $u_R(x_0) = 0$ e considere o conjunto $A = \{x \in B_R; u_R(x) = 0\}$. Assim, A é fechado e não vazio. Agora seja $\alpha > 0$ tal que $B(x_0, 4\alpha) \subset B_R$. Pela desigualdade de Harnack ([D. Gilbarg,; Trudinger], Teorema 8.20), existe C > 0 tal que

$$\sup_{B(x_0,\alpha)} u_R \le C \inf_{B(x_0,\alpha)} u_R = 0.$$

Com isso podemos concluir que $u_R(x) = 0$ para todo $x \in B(x_0, \alpha)$ e assim A também é aberto. Desde que B_R é conexo, teríamos $B_R = A$, o que é um absurdo, pois $\int_{B_R} u_R^2 dx \neq 0$. Logo, $u_R(x) > 0$, para todo $x \in B_R$.

Afirmação 3: Se $R_1 < R_2$, então

$$\lambda_1^{R_2} \le \lambda_1^{R_1}$$

e $\lambda_1^R \setminus \lambda_1(\mathbb{R}^n)$ quando $R \to +\infty$.

Seja $u_{R_1} \in H_0^1(B_{B_1})$ uma autofunção positiva do problema (P_{R_1}) associada ao autovalor $\lambda_1^{R_1}$. Estendendo a função como segue

$$\bar{u}_{R_1}(x) = \begin{cases} u_{R_1}(x), & \text{se } x \in B_{R_1} \\ 0, & \text{se } x \in B_{R_2} \setminus B_{R_1} \end{cases}$$

temos que $\bar{u}_{R_1} \in H_0^1(B_{R_2})$. Além disso, pela definição de $\lambda_1^{R_2}$,

$$\lambda_1^{R_2} \leq \frac{\int_{B_{R_2}} (|\nabla \bar{u}_{R_1}|^2 - V \bar{u}_{R_1}^2) dx}{\int_{B_{R_2}} \bar{u}_{R_1}^2 dx} = \frac{\int_{B_{R_1}} (|\nabla u_{R_1}|^2 - V u_{R_1}^2) dx}{\int_{B_{R_1}} u_{R_1}^2 dx} = \lambda_1^{R_1}.$$

É fácil ver que $C_c^{\infty}(B_R) \subset C_c^{\infty}(\mathbb{R})$ para R > 0. Então, pela definição de $\lambda_1(\mathbb{R}^n)$ e λ_1^R , temos

$$\lambda_1(\mathbb{R}^n) \leq \lambda_1^R$$
.

Seja $(u_m)_m$ uma sequência minimizante, isto é,

$$\mathcal{L}(u_m) \to \lambda_1(\mathbb{R}^n)$$
 quando $m \to +\infty$.

Note que para cada u_m existe R > 0 tal que supp $u_m \subset \subset B_R$, então $u_m \in C_c^{\infty}(B_R)$. Assim temos

$$\frac{\int_{\mathbb{R}^n} (|\nabla u_m|^2 - V u_m^2) dx}{\int_{\mathbb{R}^n} u_m^2 dx} = \frac{\int_{B_R} (|\nabla u_m|^2 - V u_m^2) dx}{\int_{B_R} u_m^2 dx} \ge \lambda_1^R \ge \lambda_1(\mathbb{R}^n).$$

Com isso fica verificado a Afirmação 3.

Sabemos pelo Lema 1.1.1 que $\lambda_1(\mathbb{R}^n) \leq 0$. Então, supondo que $\lambda_1(\mathbb{R}^n) = 0$, devemos verificar que a equação Lu = 0 possui solução positiva. Para esta verificação mostraremos em três etapas que podemos extrair uma subsequência de $(R_m)_m$ que vai para o infinito tal que $(u_{R_m})_m$ converge em $C^2_{loc}(\mathbb{R}^n)$ para algum u > 0 de classe C^2 solução da equação Lu = 0 em \mathbb{R}^n .

Seja u_R a solução do problema

$$\begin{cases} (-\Delta - V - \lambda_1^R)u_R = 0 & \text{em } B_R \\ u_R = 0 & \text{sobre } \partial B_R. \end{cases}$$

Pelo o que já foi visto podemos tomar $u_R > 0$ em B_R e normalizada com $u_R(0) = 1$. Por simplicidade, vamos supor que a sequência $R_m = m$.

Etapa 1. Mostraremos que $u_m \in C^{2,\alpha}(B_{3R_1})$ para $m > 3R_1$.

Fixado $R_1 \geq 1$, para cada natural $m>3R_1$, temos $V(x)+\lambda_1^m \in C^1(\overline{B_{3R_1}})$. Sendo B_{3R_1} convexo, pelo Teorema A.1.11,

$$C^1(\overline{B_{3R_1}}) \hookrightarrow C^\alpha(\overline{B_{3R_1}}) \quad \text{para} \ \ 0 < \alpha < 1,$$

isto é, $V(x) + \lambda_1^m \in C^{\alpha}(\overline{B_{3R_1}})$. Segue pelo Lema A.1.1 que $u_m \in C^{2,\alpha}(B_{3R_1})$ para $m > 3R_1$.

Etapa 2. Vamos mostrar que

$$||u_m||_{C^{2,\alpha}(\overline{B_{B_1}})} \leq C$$
, para $m > 3R_1$.

Pela primeira parte da demostração, temos $u_m \in C^{2,\alpha}(B_{3R_1})$ para $m>3R_1$. Note que podemos tomar uma constante C tal que

$$||V(x) + \lambda_1^m||_{C^{\alpha}(\overline{B_{3R_1}})} \le C, \quad \text{para} \quad m > 3R_1, \tag{1.6}$$

pois, pela Afirmação 3, temos que $\lambda_1^m \setminus \lambda_1(\mathbb{R}^n) = 0$ quando $m \to \infty$. Assim, pelo Teorema A.1.12, existe $C_1 > 0$ tal que

$$d\|Du_m\|_{C(B_{2R_1})} + d^2\|D^2u_m\|_{C(B_{2R_1})} + d^{2+\alpha}\|D^2u_m\|_{C^{\alpha}(B_{2R_1})} \le C_1\|u_m\|_{C(B_{3R_1})}, (1.7)$$

para $m > 3R_1$ e $d \le dist(B_{2R_1}, \partial B_{3R_1})$. Utilizando-se novamente de (1.6), podemos afirmar pelo Teorema A.1.10 que existe uma constante $C_2 > 0$ tal que

$$\sup_{B_{3R_1}} u_m \le C_2 \inf_{B_{3R_1}} u_m, \quad \text{para} \ m > 3R_1.$$

Como $u_m(0) = 1 \quad \forall m \in \mathbb{N}$, temos

$$\sup_{B_{3R_1}} u_m \le \frac{\sup_{B_{3R_1}} u_m}{\inf_{B_{3R_1}} u_m} \le C_2 \quad \text{para} \quad m > 3R_1$$

e, consequentemente,

$$||u_m||_{C(R_{3R_1})} = \sup_{B_{3R_1}} |u_m| \le C_2 \quad \text{para} \quad m > 3R_1.$$
 (1.8)

Desta forma, temos que a sequência (u_m) é limitada em $L^p(R_{2R_1})$, para $1 \leq p < \infty$. Além disso,

$$||u_m||_{L^p(R_{2R_1})} \le C_3$$
, para $m > 3R_1$.

Desde que $B_{R_1} \subset\subset B_{2R_1}$, segue do Teorema A.1.13 que

$$||u_m||_{W^{2,p}(B_{R_1})} \le C_4 ||u_m||_{L^p(R_{2R_1})}, \text{ para } m > 3R_1.$$

Agora, usando o Teorema A.1.14, vamos tomar k=2 e p suficientemente grande de modo que p > N. Assim,

$$W^{2,p}(B_{R_1}) \hookrightarrow C^{1,\alpha}(\overline{B_{R_1}}),$$

com $\alpha = 1 - n/p$. Implicando que, para todo $m > 3R_1$,

$$||u_m||_{C^{1,\alpha}(\overline{B_{R_1}})} \le C_5. \tag{1.9}$$

Por (1.7) e (1.8), existe uma constante C > 0 tal que

$$||D^2 u_m||_{C^{\alpha}(B_{2R_1})} \le C \quad \text{para} \quad m > 3R_1.$$
 (1.10)

Segue por (1.9) e (1.10) que

$$||u_m||_{C^{2,\alpha}(\overline{B_{R_1}})} \leq C$$
 para $m > 3R_1$,

para uma certa constante C > 0. Segue que a família $\{D^{\beta}u_m\}$, $\beta = 0, 1, 2$, é equicontínua e uniformemente limitada em B_{R_1} e, assim, pelo Teorema de Arzelá-Ascoli, (u_m) possui uma subsequência, que denotaremos ainda por (u_m) , tal que

$$u_m \to u \text{ em } C^{2,\alpha}(\overline{B_{R_1}}).$$

Etapa 3. Vamos utilizar um argumento diagonal para justificar que a menos de subsequência

$$u_m \to u \quad \text{em} \quad C^2_{\text{loc}}(\mathbb{R}^n),$$

onde u satisfaz

$$\Delta u + Vu = 0 \text{ em } \mathbb{R}^n.$$

Fazendo $R_1=1,2,3,...$, encontramos $C_1,C_2,C_3,...$ tais que

$$||u_m||_{C^{2,\alpha}(\overline{B_1})} \le C_1, \quad m > 3$$

$$||u_m||_{C^{2,\alpha}(\overline{B_2})} \le C_2, \quad m > 6$$

$$||u_m||_{C^{2,\alpha}(\overline{B_2})} \le C_3, \quad m > 9$$

:

$$||u_m||_{C^{2,\alpha}(\overline{B_{R_1}})} \le C_{R_1}, m > 3R_1.$$

Agora, para cada $i \in \mathbb{N}$, defina

$$u_m^i \equiv u_{m|\overline{B_i}} \ m > 3i.$$

Temos $\{u_m^i\}_{m=3i+1}^\infty$ uma sequência limitada para cada $i\in\mathbb{N}$. Usando a imersão compacta

$$C^{2,\alpha}(\overline{B_i}) \hookrightarrow C^2(\overline{B_i}), i \in \mathbb{N},$$

obtemos $u_i \in C^2(\overline{B_i}), i \in \mathbb{N}$, tais que a menos de subsequências

$$u_4^1, u_5^1, u_6^1, \dots \to u_1 \quad \text{em} \quad \mathbb{C}^2(\overline{B_1})$$

$$u_7^2, u_8^2, u_9^2, \dots \to u_2 \text{ em } \mathbb{C}^2(\overline{B_2})$$

$$u_{10}^3, u_{11}^3, u_{12}^3, \dots \to u_3 \text{ em } \mathbb{C}^2(\overline{B_3})$$

:

$$u^i_{3i+1}, u^i_{3i+2}, u^i_{3i+3}, \ldots \to u_i \quad \text{em} \quad \mathbb{C}^2(\overline{B_i}).$$

Definindo

$$u(x) = u_i(x)$$
 para $x \in \overline{B_i}$,

temos u > 0 de classe $C^2(\mathbb{R}^n)$. Além disso, a sequência

$$U_i = u_{4i}^i,$$

isto é, a sequência diagonal

$$\{u_4^1,u_8^2,u_{12}^3,...,u_{4i}^i,...\}\quad \text{com}\ \ i\in\mathbb{N},$$

verifica

$$U_i \to u \text{ em } C^2(\overline{R_{R_1}}),$$

para cada inteiro $R_1 \geq 1$.

Reciprocamente, seja Lu=0 para algum u>0 em $C^2(\mathbb{R}^n)$. Com vista a uma contradição, suponhamos que $\lambda_1(\mathbb{R}^n)<0$. Assim, podemos tomar um domínio $\Omega\subset\mathbb{R}^n$ tal que $\lambda_1(\Omega)<0$. Além disso, existe $u_\Omega>0$ com

$$\begin{cases} Lu_{\Omega} - \lambda_1(\Omega)u_{\Omega} &= 0 \text{ em } \Omega \\ u_{\Omega} &= 0 \text{ sobre } \partial\Omega. \end{cases}$$

Seja $w := u_{\Omega}/u$. Veja que em Ω verificamos

$$0 = uLu_{\Omega} - u\lambda_{1}(\Omega)u_{\Omega} - u_{\Omega}Lu$$

$$= u\Delta u_{\Omega} - u\lambda_{1}(\Omega)u_{\Omega} - u_{\Omega}\Delta u$$

$$= \sum_{i=1}^{n} \left(u^{2}\frac{u(u_{\Omega})_{x_{i}} - u_{\Omega}u_{x_{i}}}{u^{2}}\right)_{x_{i}} + u^{2}\lambda_{1}(\Omega)\frac{u_{\Omega}}{u}$$

$$= \nabla \cdot (u^{2}\nabla w) + u^{2}\lambda_{1}(\Omega)w.$$

Logo,

$$\begin{cases} \nabla \cdot (u^2 \nabla w) + u^2 \lambda_1(\Omega) w = 0 \text{ em } \Omega \\ w = 0 \text{ sobre } \partial \Omega. \end{cases}$$

Como $\nabla \cdot (u^2 \nabla) + u^2 \lambda_1(\Omega)$ satisfaz o Princípio do Máximo em Ω , teremos w = 0 em Ω . Contradição, pois w > 0 em Ω .

No teorema a seguir mostraremos a prova da Conjectura (A) em dimenção 1,2 e 3, onde em dimensão 3 há a seguinte hipótese adicional: $|u(x)| \leq Ce^{-\alpha|x_3|}$ para $x = (x_1, x_2, x_3)^3 \in \mathbb{R}^3$ onde C e α são constantes positivas.

Para a prova do Teorema 1.1.1 usaremos o seguinte resultado:

Teorema de Ekeland (ver [7]) Seja \mathcal{L} um funcional limitado inferiormente e de classe C^1 no espaço de Banach X. Dados $\epsilon > 0, \lambda > 0$ e $\mathcal{L}(\bar{\psi}) \leq \inf_X \mathcal{L} + \epsilon$. Então existe $\psi \in X$ tal que

- (i) $\mathcal{L}(\psi) \leq \mathcal{L}(\bar{\psi})$
- (ii) $\|\psi \bar{\psi}\| \le 1/\lambda$
- (iii) $\|\mathcal{L}'(\psi)\| \le \epsilon \lambda$.

Teorema 1.1.1 Seja $L = -\Delta - V$ um operador de Schrödinger em \mathbb{R}^n com o potencial V suave e limitado. Suponha que u é solução de Lu = 0 limitada e muda de sinal.

- (a) Se n = 1 ou n = 2, então $\lambda_1(\mathbb{R}^n) < 0$.
- (b) Se n=3 e $|u(x)| \leq Ce^{-\alpha|x_3|}$ para $x=(x_1,x_2,x_3) \in \mathbb{R}^3$, onde C e α são constantes positivas, então $\lambda_1(\mathbb{R}^n) < 0$.

Demonstração: Assuma primeiramente que para cada R>0 existe uma função $\xi_R\in H^1(\mathbb{R}^n)$ tal que

$$\xi_R = 1 \text{ em } B_R, \ \xi_R \in C_c^{\infty}(\mathbb{R}^n)$$

e

$$\int_{\mathbb{R}^n} |u|^2 |\nabla \xi_R|^2 dx \to 0 \text{ quando } R \to +\infty,$$

onde u é solução inteira de $\Delta u + Vu = 0$. Como na prova do Lema 1.1.1, podemos verificar que

$$\mathcal{L}(|u|\xi_R) = \frac{\int_{\mathbb{R}^n} |u|^2 |\nabla \xi_R|^2 dx}{\int_{\mathbb{R}^n} |u|^2 |\xi_R|^2 dx}.$$

Isso significa que, se $\lambda_1(\mathbb{R}^n) = 0$, então a sequência $(|u|\xi_R)_R$ é minimizante para \mathcal{L} em $H^1(\mathbb{R}^n)$.

Aplicando o Teorema de Ekeland com

$$\bar{\psi} := |u|\xi_R, \quad \epsilon_R := \mathcal{L}(|u|\xi_R) \quad \text{e} \quad \lambda_R := \left(\frac{1}{\int_{\mathbb{R}^n} |u|^2 |\nabla \xi_R|^2 dx}\right)^{1/2},$$

obtemos funções $\psi_R \in H^1(\mathbb{R}^n)$ satisfazendo

$$\mathcal{L}(\psi_R) = \mathcal{L}(|u|\xi_R) \tag{1.11}$$

$$\|\psi_R - |u|\xi_R\| \le \left(\int_{\mathbb{R}^n} |u|^2 |\nabla \xi_R|^2 dx\right)^{1/2}$$
 (1.12)

$$\|\mathcal{L}'(\psi_R)\| \le \epsilon_R \lambda_R \tag{1.13}$$

Sendo $\mathcal{L} \in C^1(H^1, \mathbb{R})$ temos, por definição,

$$\|\mathcal{L}'(\psi_R)\| = \sup_{\eta \in H^1 \setminus \{0\}} \frac{|\mathcal{L}'(\psi_R)\eta|}{\|\eta\|_{H^1}}.$$

Segue pela desigualdade 1.13 que

$$\epsilon_{R} \lambda_{R} \|\eta\|_{H^{1}} \geq |\mathcal{L}'(\psi_{R})\eta|
\geq \left| \lim_{t \to 0} \frac{\mathcal{L}(\psi_{R} + \eta t) - \mathcal{L}(\psi_{R})}{t} \right|
\geq \left| \frac{2 \int_{\mathbb{R}^{n}} (\nabla \psi_{R} \cdot \nabla \eta - V \psi_{R} \eta) dx - 2 \mathcal{L}(\psi_{R}) \int_{\mathbb{R}^{n}} \psi_{R} \eta \ dx}{\int_{\mathbb{R}^{n}} \psi_{R}^{2} dx} \right|$$

Logo

$$\left| \int_{\mathbb{R}^n} (\nabla \psi_R \cdot \nabla \eta - V \psi_R \eta) dx - \mathcal{L}(\psi_R) \int_{\mathbb{R}^n} \psi_R \eta \ dx \right| \le \epsilon_R \lambda_R \|\eta\|_{H^1} \int_{\mathbb{R}^n} \psi_R^2 dx,$$

para todo $\eta \in C_c^{\infty}$.

Note que

$$\|\psi_R - |u|\xi_R\| \le \epsilon_R \lambda_R \int_{\mathbb{R}^n} |u|^2 |\xi_R|^2 = \left(\int_{\mathbb{R}^n} |u|^2 |\nabla \xi_R|\right)^{1/2} \to 0 \text{ quando } R \to +\infty.$$

Pela continuidade de \mathcal{L}' , podemos afirmar que

$$\left| \int_{\mathbb{R}^n} \left(\nabla(|u|\xi_R) \cdot \nabla \eta - V|u|\xi_R \eta \right) dx - \mathcal{L}(|u|\xi_R) \int_{\mathbb{R}^n} |u|\xi_R \eta \ dx \right| \to 0 \text{ quando } R \to +\infty,$$

para todo $\eta \in C_{\rm c}^{\infty}$.

Sendo $(|u|\xi_R)_R$ a sequência minimizante para \mathcal{L} temos

$$\int_{\mathbb{R}^n} \Big(\nabla(|u|\xi_R) \cdot \nabla \eta - V|u|\xi_R \eta \Big) dx \to 0.$$

Tomando η com suporte compacto e lembrando que $\xi_R=1$ em B_R , obtemos

$$\int_{\mathbb{D}^n} (\nabla |u| \cdot \nabla \eta - V|u|\eta) dx = 0.$$

Isto significa que |u| também é solução para a equação Lu=0, o que é absurdo. Pois $u \in C^2$ muda de sinal, então existe x_0 tal que $u(x_0)=0$, logo $|u| \geq 0$ e pela Desigualdade de Harnack podemos concluir que $|u| \equiv 0$. Portanto $\lambda_1(\mathbb{R}^n) < 0$.

Agora resta ver em quais dimensões podemos construir funções com as mesmas propriedades das ξ_R .

Denotaremos por ξ_R^1 as funções definidas na prova do Lema 1.1.1 e, desta forma, vemos que

$$\int_{\mathbb{R}^n} |\nabla \xi_R^1| dx = \int_{B_{2R} \setminus B_R} |\nabla \xi_R^1| dx \le \frac{4}{R^2} |B_{2R} \setminus B_R| \le \frac{4}{R^2} w_n (2R)^n = CR^{n-2}.$$

Logo, para n=1, temos

$$\int_{\mathbb{R}^n} |\nabla \xi_R^1| dx \to 0 \text{ quando } R \to +\infty.$$

Assim fica verificado para n = 1.

Em dimensão 2 as funções são

$$\xi_R^2(x) = \begin{cases} 1, & \text{se } x \in B_R \\ \xi_{R,R^2}(x), & \text{se } x \in B_{R^2} \setminus B_R \\ 0, & \text{se } x \in \mathbb{R}^n \setminus B_{R^2} \end{cases}$$

onde $\xi_{R,R^2}(x) = (\ln R^2 - \ln |x|)/(\ln R^2 - \ln R)$. Vejamos que as funções acima tem a propriedade desejada.

Temos

$$|\nabla \xi_{R,R^2}(x)|^2 = \sum_{i=1}^2 \left[\left(\frac{\ln R^2 - \ln |x|}{\ln R^2 - \ln R} \right)_{x_i} \right]^2$$

$$= \sum_{i=1}^2 \left[\left(2 - \frac{\ln |x|}{\ln R} \right)_{x_i} \right]^2$$

$$= \frac{1}{|x|^2 (\ln R)^2}$$

e, com isso,

$$\int_{B_{R^2} \backslash B_R} |\nabla \xi_{R,R^2}(x)|^2 dx = \frac{1}{(\ln R)^2} \int_{B_{R^2} \backslash B_R} \frac{1}{|x|^2} dx.$$

Fazendo a mudança para coordenadas polares, temos

$$\begin{split} \int_{B_{R^2}\backslash B_R} |\nabla \xi_{R,R^2}(x)|^2 dx &= \frac{1}{(\ln R)^2} \int_0^{2\pi} \int_R^{R^2} \frac{1}{r^2} r dr d\theta \\ &= \frac{1}{(\ln R)^2} \int_0^{2\pi} (\ln R^2 - \ln R) d\theta \\ &= \frac{2\pi}{\ln R}. \end{split}$$

Logo

$$\int_{\mathbb{R}^2} |\nabla \xi_R^2(x)|^2 \to 0 \text{ quando } R \to +\infty.$$

Com isso fica verificado para n=2.

Para dimensão 3 iremos assumir $|u(x)| \leq Ce^{-\alpha|x_3|}$, $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. As funções ξ_R^3 são definidas da seguinte forma:

$$\xi_R^3(x) = \xi_R^2(x')\xi_R^1(x_3)$$
 para $x = (x', x_3) \in \mathbb{R}^3$.

Temos

$$|\nabla \xi_R^3|^2 = \sum_{i=1}^3 \left[(\xi_R^2 \xi_R^1)_{x_i} \right]^2$$

$$= \left[(\xi_R^2)_{x_1} \xi_R^1 \right]^2 + \left[(\xi_R^2)_{x_2} \xi_R^1 \right]^2 + \left[\xi_R^2 (\xi_R^1)_{x_3} \right]^2$$

$$= |\xi_R^1|^2 |\nabla \xi_R^2|^2 + |\xi_R^2|^2 |\nabla \xi_R^1|^2.$$

Capítulo 1 Contra-exemplo

Logo

$$\begin{split} \int_{\mathbb{R}^3} |u|^2 |\xi_R^3|^2 dx & \leq \int_{\mathbb{R}} \int_{\mathbb{R}^2} C e^{-2\alpha |x_3|} \Big(|\xi_R^1|^2 |\nabla \xi_R^2|^2 + |\xi_R^2|^2 |\nabla \xi_R^1|^2 \Big) dx' dx_3 \\ & = \int_{\mathbb{R}} C e^{-2\alpha |x_3|} |\xi_R^1|^2 dx_3 \int_{\mathbb{R}^2} |\nabla \xi_R^2|^2 dx' + \int_{\mathbb{R}} C e^{-2\alpha |x_3|} |\nabla \xi_R^1|^2 dx_3 \int_{\mathbb{R}^2} |\xi_R^2|^2 dx' \\ & = \int_{(-2R,2R)} C e^{-2\alpha |x_3|} |\xi_R^1|^2 dx_3 \int_{B_{R^2} \backslash B_R} |\nabla \xi_R^2|^2 dx' \\ & + \int_{(-2R,-R) \cup (R,2R)} C e^{-2\alpha |x_3|} |\nabla \xi_R^1|^2 dx_3 \int_{B_{R^2}} |\xi_R^2|^2 dx' \\ & \leq C_1 \frac{R}{e^{2\alpha R}} \int_{B_{R^2} \backslash B_R} |\nabla \xi_R^2|^2 dx' + C_2 \frac{R^4}{e^{2\alpha R}} \int_{(-2R,-R) \cup (R,2R)} |\nabla \xi_R^1|^2 dx_3 \end{split}$$
 Daí

$$\int_{\mathbb{R}^3} |u|^2 |\xi_R^3|^2 dx \to 0 \quad \text{quando} \quad R \to +\infty,$$

o que conclui a demonstração do teorema.

A seguir forneceremos uma prova para a Conjectura (B) em dimensão 1 e 2.

Teorema 1.1.2 Suponha $\varphi(x) > 0$ para todo $x \in \mathbb{R}^n$. Então qualquer função $u \in$ $C^2(\mathbb{R}^n)$ tal que φu é limitada em \mathbb{R}^n e satisfaz $\nabla \cdot (\varphi^2 \nabla u) = \sum_{i=1}^n (\varphi^2 u_{x_i})_{x_i} = 0$ é necessariamente constante.

Demonstração: Multiplicando $\sum_{i=1}^{n} (\varphi^{2} u_{x_{i}})_{x_{i}} = 0$ por $(\xi_{R})^{2} u$, $\xi_{R} \in C_{c}^{\infty}(\mathbb{R}^{n})$ tal que $\xi_{R} = 1$ em B_{R} , e integrando em \mathbb{R}^{n} , temos

$$0 = \sum_{i=1}^{n} \int_{\mathbb{R}^n} (\xi_R)^2 u(\varphi^2 u_{x_i})_{x_i} dx.$$

Integrando por partes

$$0 = -\sum_{i=1}^{n} \int_{\mathbb{R}^{n}} ((\xi_{R})^{2}u)_{x_{i}} \varphi^{2} u_{x_{i}} dx$$

$$= -\sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \left(2\xi_{R}(\xi_{R})_{x_{i}} u \varphi^{2} u_{x_{i}} + (\xi_{R})^{2} \varphi^{2} u_{x_{i}}^{2} \right) dx$$

$$= -2 \int_{\mathbb{R}^{n}} \xi_{R} u \varphi^{2} \nabla \xi_{R} \cdot \nabla u \, dx - \int_{\mathbb{R}^{n}} (\xi_{R})^{2} \varphi^{2} |\nabla u|^{2} dx.$$

Segue que

$$\int_{\mathbb{R}^n} (\xi_R)^2 \varphi^2 |\nabla u|^2 dx = -2 \int_{\mathbb{R}^n} \xi_R u \varphi^2 \nabla \xi_R \cdot \nabla u \, dx$$

$$\leq 2 \int_{\mathbb{R}^n} |\xi_R \varphi \nabla u| |u \varphi \nabla \xi_R| dx$$

Por Hölder

$$\int_{\mathbb{R}^n} (\xi_R)^2 \varphi^2 |\nabla u|^2 dx \le 2 \left(\int_{\mathbb{R}^n} |\xi_R \varphi \nabla u|^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} |u \varphi \nabla \xi_R|^2 dx \right)^{\frac{1}{2}}.$$

Isso implica que

$$\int_{\mathbb{R}^n} (\xi_R)^2 \varphi^2 |\nabla u|^2 dx \le 4 \int_{\mathbb{R}^n} (u\varphi)^2 |\nabla \xi_R|^2 dx.$$

Sendo $u\varphi$ limitado em \mathbb{R}^n , existe uma constante C>0 tal que

$$\int_{\mathbb{R}^n} \varphi^2 |\nabla u|^2 dx \le \int_{\mathbb{R}^n} (\xi_R)^2 \varphi^2 |\nabla u|^2 dx \le C \int_{\mathbb{R}^n} |\nabla \xi_R|^2 dx.$$

Para n=1, tomemos $\xi_R=\xi_R^1$ e, para $n=2,\,\xi_R=\xi_R^2$. Assim, fazendo $R\to +\infty,$ obtemos

 $\int_{\mathbb{R}^n} \varphi^2 |\nabla u|^2 dx = 0.$

Logo $\nabla u = 0$ em B_R , assim podemos concluir que u é constante em \mathbb{R}^n para n = 1, 2.

Finalmente apresentaremos um contra-exemplo para a Conjectura (A) em dimensão $n \geq 7$.

Proposição 1.1.2 Para $n \geq 7$, existe um potencial V limitado e suave tal que $(\Delta + V)u = 0$ possui solução limitada que muda de sinal e solução positiva, isto é, $\lambda_1(\mathbb{R}^n) = 0$.

Demonstração: Considere a função $u(x) = (1 + |x|^2)^{-s_1}x_1$, $s_1 \ge 1/2$. Temos u limitado, pois

 $|u(x)| = \frac{x_1}{(1+|x|^2)^{s_1}} \le \frac{x_1}{|x|} \le 1,$

e obviamente u muda de sinal.

Além disso,

$$\Delta u = \left[-2s_1(1+|u|^2)^{-s_1-1}x_1^2 + (1+|x|^2)^{-s_1} \right]_{x_1} + \sum_{i=2}^n \left[-2s_1(1+|u|^2)^{-s_1-1}x_ix_1 \right]_{x_i}$$

$$= 4(s_1+1)(1+|x|^2)^{-s_1-2}x_1x_1^2 - 4s_1(1+|x|^2)^{-s_1-1}x_1 - 2s_1(1+|x|^2)^{-s_1-1}x_1$$

$$+ \sum_{i=2}^n 4(s_1+1)(1+|x|^2)^{-s_1-2}x_1x_i^2 - 2s_1(1+|x|^2)^{-s_1-1}x_1$$

$$= 4(s_1+1)s_1\frac{(1+|x|^2)^{-s_1}x_1}{(1+|x|^2)^2}|x|^2 - 4s_1\frac{(1+|x|^2)^{-s_1}x_1}{1+|x|} - 2ns_1\frac{(1+|x|^2)^{-s_1}x_1}{1+|x|^2}$$

$$= 4(s_1+1)s_1\frac{u}{(1+|x|^2)^2}|x|^2 - 4s_1\frac{u}{1+|x|} - 2ns_1\frac{u}{1+|x|^2}$$

e portanto,

$$\frac{\Delta u}{u} = \frac{4(s_1+1)s_1|x|^2}{(1+|x|^2)^2} - \frac{4s_1}{1+|x|^2} - \frac{2ns_1}{1+|x|^2}$$

$$= \frac{4(s_1+1)s_1|x|^2}{(1+|x|^2)^2} - \frac{2(n+2)s_1}{1+|x|^2} + \frac{4(s_1+1)s_1}{(1+|x|^2)^2} - \frac{4(s_1+1)s_1}{(1+|x|^2)^2}$$

$$= \frac{4(s_1+1)s_1(1+|x|^2)}{(1+|x|^2)^2} - \frac{2(n+2)s_1}{1+|x|^2} - \frac{4(s_1+1)s_1}{(1+|x|^2)^2}$$

$$= -\frac{4(s_1+1)s_1}{(1+|x|^2)^2} - \frac{2(n+2)s_1 - 4(s_1+1)s_1}{1+|x|^2}.$$

.

Defina

$$V(x) = \frac{4(s_1+1)s_1}{(1+|x|^2)^2} + \frac{2(n+2)s_1 - 4(s_1+1)s_1}{1+|x|^2}.$$

Assim, temos que $(\Delta + V)u = 0$, com $u(x) = (1 + |x|^2)^{-s_1}x_1$.

Agora, considerando $\varphi(x) = (1 + |x|^2) - s_2, s_2 > 0$, temos

$$\Delta \varphi = \sum_{i=1}^{n} [-2s_2(1+|x|^2)^{-s_2-1}x_i]_{x_i}$$
$$= 4(s_2+1)s_2 \frac{\varphi}{(1+|x|^2)^2} |x|^2 - 2ns_2 \frac{\varphi}{1+|x|^2}.$$

Segue que

$$\begin{split} \frac{\Delta \varphi}{\varphi} &= \frac{4(s_2+1)s_2|x|^2}{(1+|x|^2)^2} - \frac{2ns_2}{1+|x|^2} \\ &= \frac{4(s_2+1)s_2|x|^2}{(1+|x|^2)^2} - \frac{2ns_2}{1+|x|^2} + \frac{4(s_2+1)s_2}{(1+|x|^2)^2} - \frac{4(s_2+1)s_2}{(1+|x|^2)^2} \\ &= -\frac{4(s_2+1)s_2}{(1+|x|^2)^2} - \frac{2ns_2-4(s_2+1)s_2}{1+|x|^2}. \end{split}$$

Seja

$$W(x) = \frac{4(s_2+1)s_2}{(1+|x|^2)^2} + \frac{2ns_2 - 4(s_2+1)s_2}{1+|x|^2}.$$

Assim, temos $(\Delta + W)\varphi = 0$, com $\varphi(x) = (1 + |x|^2) - s_2$. Pela Proposição 1.1.1, temos que $\lambda_1(\mathbb{R}^n, W) = 0$.

Se $s_1 = 1/2$ e $s_2 = n - 2/4$, teremos

$$V(x) = \frac{3}{(1+|x|^2)^2} + \frac{n-1}{1+|x|^2}$$

$$W(x) = \frac{(n-2)\left(\frac{n+2}{4}\right)}{(1+|x|^2)^2} + \frac{\frac{(n-2)^2}{4}}{1+|x|^2}.$$

Tomando $s_1 \leq s_2$ e $n-1 \leq (n-2)^2/4$, isto é, $n \geq 7$, obtemos $V \leq W$. Consequentemente $0 = \lambda_1(\mathbb{R}^n, W) \leq \lambda_1(\mathbb{R}^n, V) \leq 0$. Logo $\lambda_1(\mathbb{R}^n, V) = 0$ para $n \geq 7$. Em outras palavras, $(\Delta + V)u = 0$ possui solução positiva para $n \geq 7$.

Agora mostraremos que a Conjectura (B) também não é satisfeita para $n \geq 7$.

Proposição 1.1.3 Se $n \geq 7$, existe uma função $\varphi > 0$ de classe C^2 em \mathbb{R}^n e uma solução não constante para $\nabla \cdot (\varphi^2 \nabla v) = 0$ com φv limitada.

Demonstração: Seja $\lambda_1(\mathbb{R}^n) = 0$. Pela Proposição 1.1.1, existe $\varphi > 0$ com $L\varphi = 0$ e sendo $n \geq 7$, existe uma u com Lu = 0 que muda de sinal. Seja $v = u/\varphi$, temos

$$\nabla \cdot (\varphi^2 \nabla v) = \sum_{i=1}^n (\varphi^2 v_{x_i})_{x_i}$$

$$= \sum_{i=1}^n \left(\varphi^2 \frac{u_{x_i} \varphi - u \varphi_{x_i}}{\varphi^2} \right)_{x_i}$$

$$= \sum_{i=1}^n u_{x_i x_i} \varphi - u \varphi_{x_i x_i}$$

$$= \varphi \Delta u - u \Delta \varphi + V u \varphi - V \varphi u = 0.$$

Portanto, se a Conjectura (B) fosse satisfeita para $n \geq 7$, teríamos v constante e, consequentemente, u não mudaria de sinal. Isso contradiria nossa suposição.

1.2 Conjectura de De Giorgi para n = 2

Nesta seção, nosso intuito é mostrar que a conjectura De Giorgi é de fato verdade em dimensão 2.

Teorema 1.2.1 Seja $F \in C^2(\mathbb{R})$. Suponha u uma solução inteira e limitado de

$$\Delta u - F'(u(x)) = 0$$
 para $x = (x_1, x_2) \in \mathbb{R}^2$.

tal que $\partial u/\partial x_2 \geq 0$ em todo \mathbb{R}^2 . Então u é da forma $u(x) = g(ax_1 + bx_2)$, para $g \in C^2(\mathbb{R})$ com a, b constantes apropriadas.

Demonstração: Se u é uma solução inteira e limitada de $\Delta u = F'(u) = u^3 - u$, então $u \in C^{\infty}(\mathbb{R}^2)$ e

$$0 = (\Delta u - F'(u))_{x_2}$$

$$= (u_{x_1x_1})_{x_2} + (u_{x_2x_2})_{x_2} - F''(u)u_{x_2}$$

$$= (u_{x_2})_{x_1x_1} + (u_{x_2})_{x_2x_2} - F''(u)u_{x_2}$$

$$= \Delta u_{x_2} - F''(u)u_{x_2}$$

Isto é, se u satisfaz $\Delta u = F'(u)$, então u_{x_2} é solução da equação

$$\Delta + V(x) = 0 \text{ para } x \in \mathbb{R}^2, \tag{1.14}$$

onde $-V(x) = F''(u(x)) = 3u(x)^2 - 1$ é suave e limitado.

Note que podemos assumir $u_{x_2} > 0$ em \mathbb{R}^2 , pois se $u_{x_2}(y) = 0$ para algum $y \in \mathbb{R}^2$ tomaríamos uma bola $B_R(y)$ centrada em y de raio R > 0, pela desigualdade de Harnack $u_{x_2} = 0$ em $B_R(y)$ sendo R arbitrário teriamos u_{x_2} em todo \mathbb{R}^2 . Assim existiria $g \in C^2(\mathbb{R})$ tal que $u(x) = g(x_1)$.

É facil ver que qualquer direção $\nu \in S^1$ do plano, a derivada direcional $\partial u/\partial \nu$ satisfaz a equação

$$\Delta \frac{\partial u}{\partial \nu} - F''(u(x)) \frac{\partial u}{\partial \nu} = 0.$$

Sabendo que o gradiente de u no ponto y é perpendicular à superfície de nível de u que passa por esse ponto, em outras palavras, ∇u é perpendicular ao vetor velocidade no ponto y (ver [11] p. 140-141). Então para valor ν_1 e algum ponto $y \in \mathbb{R}^2$ podemos ecolher um ν_2 tal que $\nu = (\nu_1, \nu_2)$ e $\nu \cdot \nabla u(y) = 0$.

Seja $\varphi(x) = \nu \cdot \nabla u(x)$ para todo $x \in \mathbb{R}^2$. Temos $u_{x_2} > 0$ solução da equação (1.14) então, pela Proposição 1.1.1 temos $\lambda_1(\mathbb{R}^n) = 0$. Pelo Teorema 1.1.1 em dimensão 2, concluimos que φ não muda de sinal, então

$$\varphi(y) = \min_{x \in \mathbb{R}^2} \varphi(x) = 0.$$

Pela desigualdade de Harnack $\varphi \equiv 0$ em \mathbb{R}^2 . Logo u é constante ao longo da direção ν , seja $\eta = (\eta_1, \eta_2) \in S^1$ ortogonal a ν . Segue que

$$u(x) = q(\eta_1 x_1 + \eta_2 x_2),$$

para uma certa função $g \in C^2(\mathbb{R})$.

Com o objetivo de provar o Teorema 1.2.2 daqui por diante assumiremos $F \in C^2(\mathbb{R})$ uma função não negativa tal que $F(\pm 1) = 0$ e $F''(\pm 1) \geq \mu > 0$ para alguma constante μ e u solução inteira de

$$\Delta u - F'(u) = 0$$

tal que $u(x', x_n)$ converge para ± 1 uniformemente quando $x_n \to \pm \infty$.

Para a prova do Lema 1.2.1 a seguir usaremos o seguinte resultado:

Teorema (ver [13]) Seja $F \in C^2(\mathbb{R})$ uma função não negativa e $u \in C^2(\mathbb{R}^n)$ uma solução inteira e limitada da equação

$$\Delta u - F'(u) = 0.$$

Então

$$|\nabla u(x)|^2 \le 2F(u(x))$$
 para cada $x \in \mathbb{R}^n$.

Lema 1.2.1 Se existe $x_0 \in \mathbb{R}^n$ tal que $F(u(x_0)) = 0$, então u é constante.

Demonstração: Seja $a = u(x_0)$, definamos $A = \{x \in \mathbb{R}^n; u(x) = a\}$. Iremos mostrar que $A = \mathbb{R}^n$ precedendo da seguinde forma. Sendo \mathbb{R}^n um conjunto conexo, com isso, os únicos subconjuntos simultaneamentes abertos e fechados em \mathbb{R}^n são \emptyset e o próprio \mathbb{R}^n . Então, sendo A não vazio e fechado (pois u é uma função contínua e $A = u^{-1}(a)$), nos resta provar que A é aberto.

Seja $u(x_1)=a$, por $F\geq 0$ e F(a)=0 temos que a é um ponto de mínimo local, então F'(a)=0 e $F''(a)\geq 0$. Sendo F'' contínua podemos tomar um $\delta>0$ de tal forma que F seja convexa no intevalo $[a-\delta,a+\delta]$. Com isso obtemos as desigualdades (1.15) e (1.16).

$$F(s(a+\delta) + (1-s)a) \le sF(a+\delta) + (1-s)F(a)$$
 para $s \in [0,1]$. (1.15)

Daí

$$F(s\delta + a) \le sF(a + \delta),$$

tomando $t = s\delta + a$, obtemos

$$F(t) \le (t-a) \frac{F(a+\delta)}{\delta}$$
 para $t \in [a, a+\delta]$.

$$F(s(a-\delta) + (1-s)a) \le sF(a-\delta) + (1-s)F(a)$$
 para $s \in [0,1]$. (1.16)

Procedendo de forma análoga, podemos obter

$$F(t) \le (a-t) \frac{F(a-\delta)}{\delta}$$
 para $t \in [a-\delta, a]$.

Por (1.15) e (1.16) podemos tomar um $C \ge 0$ tal que

$$F(t) \le C(t-a)^2$$
 para $t \in [a-\delta, a+\delta]$.

Agora seja $w \in \mathbb{R}^n$ e |w| = 1 tomado arbitrariamente, definamos

$$\phi(t) = u(x_1 + tw) - u(x_1)$$
 para $|t| < \epsilon$,

tal que $u(x_1 + tw) \subset [a - \delta, a + \delta]$.

Note que

$$\phi'(t) = \lim_{h \to 0} = \frac{\phi(t+h) - \phi(h)}{h}$$

$$= \lim_{h \to 0} = \frac{u(x_1 + tw + hw) - u(x_1 + tw)}{h}$$

$$= \frac{\partial u}{\partial w}(x_1 + tw)$$

Logo

$$|\phi'(t)|^2 = \left|\frac{\partial u}{\partial w}(x_1 + tw)\right|^2 \le |\nabla u(x_1 + tw)|^2.$$

Por outro lado

$$F(u(x_1 + tw) \le C(u(x_1 + tw) - a)^2 = C|\phi(t)|^2.$$

Pelo Teorema enunciado anteriormente, temos

$$|\phi'(t)|^2 \le 2C|\phi(t)|^2$$
.

Sendo $\phi(0) = 0$ temos pelo Lema A.1.2 que $\phi = 0$ para $|t| < \epsilon$. Logo u = a na bola $B(x_1, \epsilon)$, segue que $B(x_1, \epsilon) \subset A$.

Lema 1.2.2 $\frac{\partial u}{\partial x_n} > 0$ para todo $x \in \mathbb{R}^n$.

Demonstração: Por hipótese $F''(\pm 1) > \mu > 0$, então seja $\frac{1}{2} > \delta > 0$ suficientemente pequeno de tal forma que

$$F''(u(x)) > \frac{\mu}{2}$$
 para $-1 < u(x) < -1 + \delta$ ou $1 - \delta < u(x) < 1$.

E pelo fato de $u(x', x_n) \to \pm 1$ uniformemente quando $x_n \to \pm \infty$, podemos tomar $M_1 > 0$ tal que

$$\begin{cases} x_n \ge M_1 & \Rightarrow 1 - \delta < u(x) < 1 \\ x_n \le -M_1 & \Rightarrow -1 < u(x) < -1 + \delta \end{cases}$$

Afirmação 1: Temos $K := \sup_{x_n < M_1} u(x', x_n) < 1, x \in \mathbb{R}^n$.

Se não fosse verdade, existiria uma sequência $\{u^i\}_i$ tal que

$$\lim_{i \to \infty} u(x^i) = 1 \text{ com } -M_1 < x_n^i < M_1.$$

Definamos $u^i(x) = u(x+x^i)$ para todo $x \in \mathbb{R}^n$, temos u^i solução inteira de $\Delta u - F'(u) = 0$ e $|u^i| < 1$ para todo $i \in \mathbb{N}$. Então existe uma subsequência de $\{u^i\}_i$ que continuaremos denotando por $\{u^i\}_i$ tal que

$$u^i \to u^\infty \text{ em } C^2(\mathbb{R}^n).$$

Com u^{∞} solução inteira de $\Delta u - F'(u) = 0$ e $u^{\infty}(0) = \lim_{i \to \infty} u(x^i) = 1$, logo $F(u^{\infty}(0)) = 0$ segue pelo Lema 1.2.1 que $u^{\infty} = 1$ em \mathbb{R}^n . Contradição, pois para $x_n < -2M_1$ implica em $x_n + x_n^i < -M_1$. Então

$$u^{i}(x) = u(x + x^{i}) < -1 + \delta$$
 para $x_{n} < -2M_{1}$.

Sendo $u^{\infty}(x) = \lim_{i \to \infty} u^i(x)$, temos

$$u^{\infty}(x) \le -1 + \delta$$
 para $x_n < -2M_1$.

Agora escolhamos $M_2 > M_1$ de tal forma que $u(x', x_n) > K$ para $x_n \ge 2M_2 - M_1$. Dado $\lambda \in \mathbb{R}$ qualquer, definamos

$$u_{\lambda}(x) = u(x', 2\lambda - x_n)$$
 para $x \in \mathbb{R}^n$ e $R_{\lambda}^+ = \{x = (x', x_n) \in \mathbb{R}^n; x_n > \lambda\}.$

Afirmação 2: Se $\lambda > M_2$, então $u_{\lambda}(x) \leq u(x)$ para $x \in R_{\lambda}^+$.

Note que se $x_n \ge 2\lambda - M_1$, temos

$$x_n > 2M_2 - M_1$$
 e $2\lambda - x_n \le M_1$.

Logo $u_{\lambda}(x', x_n) \leq u(x', x_n)$, assim fica necessário apenas verificar para $x \in S_{\lambda} := \{x \in \mathbb{R}^n; \lambda < x_n < 2\lambda - M_1\}$. Para $x \in S_{\lambda}$, temos

$$1 - \delta < u(x) < 1$$
 e $1 - \delta < u_{\lambda}(x) < 1$.

Pelo teorema do valor médio de Lagrange, existe um c_x entre $u_{\lambda}(x)$ e u(x) tal que

$$\frac{F'(u_{\lambda}(x)) - F'(u(x))}{u_{\lambda}(x) - u(x)} = F''(c_x) > \frac{\mu}{2}.$$

Seja $C_{\lambda}(x) = F''(c_x)$ e $w_{\lambda}(x) = u_{\lambda}(x) - u(x)$, teremos

$$\Delta w_{\lambda} - C_{\lambda}(x)w_{\lambda}$$
.

Pela limitação de u(x) e o princípio do máximo (modificado para uma faixa infinita), podemos afirmar que

$$w_{\lambda}(x) \leq \sup_{\partial S_{\lambda}} w_{\lambda}(x)$$
 para $x \in S_{\lambda}$.

Note que, se $x_n = \lambda$ implicará em $u_{\lambda}(x', x_n) = u(x', x_n)$, consequentemente $w_{\lambda}(x) = 0$. Da mesma forma se $x_n = 2\lambda - M_1$, teremos $x_n > 2M_2 - M_1$ e $2\lambda - x_n = M_1$, segue que

$$u(x', x_n) > K$$
 e $u_{\lambda}(x', x_n) \leq K$.

Logo

$$\sup_{x_n = 2\lambda - M_1} w_{\lambda}(x) = \sup_{x_n = 2\lambda - M_1} u_{\lambda}(x) + \sup_{x_n = 2\lambda - M_1} -u(x)$$

$$= \sup_{x_n = 2\lambda - M_1} u_{\lambda}(x) - \inf_{x_n = 2\lambda - M_1} u(x) .$$

$$= K - K = 0$$

Com as verificações acima, podemos afirmar que $\sup_{\partial S_{\lambda}} w_{\lambda}(x) = 0$. Portanto $u_{\lambda}(x) \leq u(x)$ em R_{λ}^{+} .

Afirmação 3:
$$\Lambda := \inf\{\lambda \in \mathbb{R}; u_{\lambda}(x) \leq u(x) \text{ para } x \in R_{\lambda}^{+}\} = -\infty.$$

Suponha que a afirmação não seja verdade, isto é, Λ é um número finito. Então, existe sequências $\{\lambda_i\}_i$ e $\{x^i\}_i$ tal que $\lambda_i < \Lambda$, $\lim_{i \to \infty} \lambda_i = \Lambda$ e pontos $x^i \in R_{\lambda}^+$,

com $u_{\lambda_i}(x^i) > u(x^i)$ para $i \in \mathbb{N}$. É fácil ver que $|x_n^i| < M_i$ para todo $i \in \mathbb{N}$, então podemos extrair uma subsequência, que continuaremos denotando por $\{x_n^i\}_i$, que converge para x_n^{∞} . Definamos:

$$u^{i}(x) = u((x^{i})' + x', x_{n}) \text{ para } x = (x', x_{n}) \in \mathbb{R}^{n},$$

onde u converge para algum u^{∞} em $C^2_{\text{loc}}(\mathbb{R}^n)$ e é solução da equação $\Delta u - F'(u) = 0$, $x \in \mathbb{R}^n$. Além disso, temos

$$u_{\Lambda}^{\infty}(0', x_n^{\infty}) \ge u^{\infty}(0', x_n^{\infty}), \text{ onde } x_n^{\infty} \ge \Lambda,$$

onde 0' é a origem de \mathbb{R}^{n-1} , e

$$\frac{\partial u^{\infty}}{\partial x_n} \le 0$$
, se $x_n^{\infty} = \Lambda$.

Por outro lado, por definição de Λ temos $u_{\lambda}^{\infty}(x) \leq u^{\infty}(x)$ para $x \in R_{\lambda}^{+}$. Sendo $u_{\Lambda}(x) \neq u^{\infty}(x)$, devemos ter $u_{\Lambda}(x) < u^{\infty}(x)$ para $x \in R_{\lambda}^{+}$ e pelo Lema de Hopf (ver [Evans, L. C.] - pag 330) $\partial u^{\infty}/\partial x_{n} < 0$ se $x_{n} = \lambda$. Isso é uma contradição, uma vez que $x_{n}^{\infty} \geq \Lambda$. Com isso fica verifcado a Afirmação 3 e assim terminamos a prova do Lema 1.2.2.

Lema 1.2.3 Existem constantes α , c tal que $-1 < u(x) < -1 + ce^{\alpha x_n}$ para $x_n < 0$ e $1 - ce^{-\alpha x_n} < u(x) < 1$ para $x_n > 0$. Além disso, $|\nabla u(x)| \le ce^{-\alpha x_n}$ para $x \in \mathbb{R}^n$.

Demonstração: Apenas consideremos o caso $x_n > 0$ (O caso para x_n é similar). Temos $1 - \delta < u(x) < 1$ para $x_n > M_1$, então

$$\frac{F'(u(x)) - F'(1)}{u(x) - 1} = \frac{F'(u(x))}{u(x) - 1} = F''(c_x) > \frac{\mu}{2}$$

para algum $c_x \in (u(x), 1)$. Seja w(x) := 1 - u(x), teremos

$$\Delta w - \frac{\mu}{2}w \ge \Delta(1 - u) - \frac{F'(u)}{u - 1}(1 - u) = -\Delta u + F'(u) = 0$$

e $0 < w(x) < \delta$ para $x_n > M_1$.

Agora sejam $x = (x', x_n)$ com $x_n > 0$ e $A_{x_n} = B_{3x_n}(p) \setminus B_{x_n}(p)$, onde $p = (x', 3x_n)$ e $B_R(p)$ é a bola centrada em p com raio R. Para $\alpha > 0$, definamos a função teste

$$\varphi(z) = \delta(e^{-\alpha(3x_n - r)} + e^{-\alpha(r - x_n)})$$
 para $z \in A_{x_n}$,

onde r = |z - p| é a distância de z à p. Veja que

$$\Delta \varphi(z) = \sum_{i=1}^{n} [\delta(e^{-\alpha(3x_n - r)} + e^{-\alpha(r - x_n)})]_{z_i z_i}$$

$$= \sum_{i=1}^{n} [\delta e^{-\alpha(3x_n - r)} \frac{\alpha}{r} (z_i - p_i) - \delta e^{-\alpha(r - x_n)} \frac{\alpha}{r} (z_i - p_i)]_{z_i}$$

$$= \sum_{i=1}^{n} \delta e^{-\alpha(3x_n - r)} \frac{\alpha}{r} + \delta e^{-\alpha(3x_n - r)} \frac{\alpha^2}{r^2} (z_i - p_i)^2 - \delta e^{-\alpha(r - x_n)} \frac{\alpha}{r} + \delta e^{-\alpha(r - x_n)} \frac{\alpha^2}{r^2} (z_i - p_i)^2$$

$$= \delta e^{-\alpha(3x_n - r)} \frac{\alpha\alpha}{r} + \delta e^{-\alpha(3x_n - r)} \alpha^2 - \delta e^{-\alpha(r - x_n)} \frac{\alpha\alpha}{r} + \delta e^{-\alpha(r - x_n)} \alpha^2$$

Segue que

$$\Delta\varphi(z) - \frac{\mu}{2}\varphi(z) = \delta e^{-\alpha(3x_n - r)} \left(\alpha^2 + \frac{n\alpha}{r} - \frac{\mu}{2}\right) + \delta e^{-\alpha(r - x_n)} \left(\alpha^2 + \frac{n\alpha}{r} - \frac{\mu}{2}\right).$$

Note que podemos tomar α suficientemente pequeno de tal forma que

$$\Delta(\varphi - w)(z) - \frac{\mu}{2}(\varphi - w)(z) \le 0.$$

Para $z \in \partial A_{x_n}$, temos $\varphi(z) = \delta e^{-2\alpha x_n} + \delta$, logo $\varphi(z) - w(z)$ para $z \in \partial A_{x_n}$. Pelo Teorema A.1.15, temos

$$\inf_{A_{x_n}}(\varphi - w) \ge \inf_{\partial A_{x_n}}(\varphi - w)^{-}.$$

Concluimos que $\varphi(z) - w(z) > 0$ para $z \in A_{x_n}$. Agora seja $f: [x_n, 3x_n] \longrightarrow \mathbb{R}$ definida por $f(t) = \delta(e^{-\alpha(3x_n-t)} + e^{-\alpha(t-x_n)})$, temos

$$f'(t) = \delta\alpha (e^{-\alpha(3x_n - t)} - e^{-\alpha(t - x_n)})$$

e

$$f''(t) = \delta \alpha^2 (e^{-\alpha(3x_n - t)} + e^{-\alpha(t - x_n)}).$$

Logo $t = 2x_n$ é o ponto de mínimo, é claro que podemos tomar um c > 0 tal que $f(t) < ce^{-\alpha x_n}$. Com isso podemos afirmar que

$$1 - u(z) = w(z) \le \varphi(z) < ce^{-\alpha x_n}$$
 para $z \in A_{x_n}$.

Portanto

$$1 - ce^{-\alpha x_n} < u(x) \text{ para } x_n > 0.$$

A estimativa do gradiente resulta da teoria clássica das equações elípticas.

Por fim a prova do Teorema 1.2.2

Teorema 1.2.2 Seja $F \in C^2(\mathbb{R})$ uma função não negativa com $F(\pm 1) = 1$ e $F''(\pm 1) \ge \mu > 0$. Suponha u uma solução de

$$\Delta u - F'(u(x)) = 0$$
 para $x = (x', x_n) \in \mathbb{R}^n$

e $u(x',x_n)$ converge uniformemente para ± 1 quando $x_n \to \pm \infty$. Então,

- a) Para todo $x \in \mathbb{R}^n$, $\frac{\partial u}{\partial x_n} > 0$ e $|\nabla u(x)| \leq Ce^{-\alpha|x_n|}$ onde C e α são constantes positivas.
- b) Se a dimensão é 2 ou 3, então u é necessariamente da forma $u(x', x_n) = g(x_n)$, onde g(t) é solução da equação

$$g''(t) = F'(g(t))$$
 e $\lim_{t \to +\infty} g(t) = \pm 1$ $para$ $t \in \mathbb{R}$.

Demonstração: O item (a) fica verificado pelos Lemas 1.2.2 e 1.2.3

Já o item (b), dado $x_0 \in \mathbb{R}^n$, sabemos que $\nabla u(x_0)$ é perpendicular à superfície de nível que passa por x_0 , então tomando o vetor velocidade $v = (v', v_n)$ no ponto x_0 , temos $v \cdot \nabla u(x_0)$. Seja $\varphi(x) = v \cdot \nabla u(x)$ para todo \mathbb{R}^n , temos

$$|\varphi(x)| = |v \cdot \nabla u(x)|.$$

Por Cauchy-Shwarz

$$|\varphi(x)| = |v||\nabla u(x)|.$$

Tomando |v|=1, segue pelo Lema 1.2.3

$$|\varphi(x)| \le Ce^{-\alpha|x_n|}.$$

Note que φ é solução da equação

$$\Delta\varphi(x) + V(x)\varphi(x) = 0 \text{ em } \mathbb{R}^n, \tag{1.17}$$

onde V(x) = -F''(u(x)) é suave e limitada. Sendo $\frac{\partial u}{\partial x_n} > 0$ também solução da equação 1.17, pela Proposição 1.1.1, $\lambda_1(\mathbb{R}^n, V) = 0$ e pelo Teorema 1.1.1 podemos afirmar que φ não muda de sinal para n = 2 e n = 3, então podemos definir φ de tal forma que $\varphi(x_0) = \min_{x \in \mathbb{R}^n} \varphi(x)$, segue pela desigualdade de Harnack $\varphi(x) = 0$ em todo \mathbb{R}^n . Portanto u é constante ao longo da direção ν . Lembrando que $\lim_{x_n \to \pm \infty} u(x', x_n) = \pm 1$ uniformente, temos $\nu_n = 0$. Sendo x_0 arbitrário, segue que $u(x', x_n) = g(x_n)$ para um certo $g \in C^2(\mathbb{R})$.

Capítulo 2

A conjectura de De Giorgi em dimensão 3

Ao longo deste capítulo assumiremos $F \in C^2(\mathbb{R})$, u limitado e solução da equação $\Delta u - F'(u) = 0$ satisfazendo $\partial_n x = \partial u/\partial x_n > 0$ em \mathbb{R}^n .

2.1 Estimativa de Energia

Nesta seção provaremos a Conjectura de De Giorgi em dimensão 3, procedendo como na prova dada no Capítulo 1. Ou seja, temos o objetivo de provar que $\sigma_i = \partial_i u/\partial_3 u$ é constante para i=1,2. Isso vai ser obtido através de um resultado tipo Lioville (Proposição 2.1.1). O Teorema 2.1.1(Estimativa de Energia) é o resultado chave que nos permitirá aplicar a Proposição 2.1.1.

Primeiro, estabelecemos alguns limites simples e regularidade para u. Vejamos que u é de classe $C^1(\mathbb{R}^n)$ e ∇u é limitada em \mathbb{R}^n , isto é,

$$|\nabla u| \in L^{\infty}(\mathbb{R}^n).$$

Temos $u \in F'(u)$ limitados em \mathbb{R}^n , com isso $u \in F'(u)$ pertencem ao espaço $L^p(B_{2R}(y))$ para $y \in \mathbb{R}^n$ e $1 \le p < \infty$. Segue do Teorema A.1.13

$$||u||_{W^{2,p}(B_R(y))} \le C(||u||_{L^p(B_{2R}(y))} + ||F'||_{L^p(B_{2R}(y))}),$$

com C independente de y. Agora usando o Teorema A.1.14 com k=2 e p suficientemente grande de modo que p>n, temos

$$W^{2,p}(B_R(p)) \hookrightarrow C^{1,\alpha}(B_R(y)).$$

assim fica verificado que $u \in C^1(\mathbb{R}^n)$ e $|\nabla u| \in L^{\infty}(\mathbb{R}^n)$.

Agora verificaremos que $u \in W^{3,p}(\mathbb{R}^n)$ para todo $1 \leq p < \infty$. Em particular note que $u \in C^{2,\alpha}(B_R(y))$.

Pela igualdade $\Delta u = F'(u)$ podemos concluir que $u \in C^2(\mathbb{R}^n)$ e pela imersão

$$C^1(B_{2R}(y)) \hookrightarrow C^{\alpha}(B_{2R}(y))$$

que $u \in C^{\alpha}(B_{2R}(y))$, segue que $F'(u) \in C^{\alpha}(B_{2R}(y))$. Aplicando o Teorema A.1.16, obtemos

$$u \in C^{2,\alpha}(B_R(y)).$$

Sendo F'' contínuo e u, ∇u limitados, temos $F''(u)\partial_i u \in L^{\infty}(\mathbb{R}^n) \subset L^p_{loc}(\mathbb{R}^n)$ para todo $1 \leq p < \infty$. Sendo

$$\Delta \partial_i u - F''(u) \partial_i u = 0,$$

podemos concluir que $W^{2,p}_{\text{loc}}(\mathbb{R}^n)$. Segue que $u \in W^{3,p}_{\text{loc}}(\mathbb{R}^n)$ para todo $1 \leq p < \infty$.

Teorema 2.1.1 Seja u limitada e solução de

$$\Delta u - F'(u) = 0 \quad em \quad \mathbb{R}^n,$$

onde F é uma função de classe $C^2(\mathbb{R}^n)$. Suponha que

$$\partial_n u > 0$$
 em \mathbb{R}^n e $\lim_{x_n \to +\infty} u(x', x_n) = 1$ para todo $x' \in \mathbb{R}^{n-1}$.

Para cada R > 1, seja $B_R = \{|x| < R\}$. Então,

$$E_R(u) = \int_{B_R} \left\{ \frac{1}{2} |\nabla u|^2 + F(u) - F(1) \right\} dx \le CR^{n-1},$$

para alguma constante C independente de R.

Demonstração: Considere as funções

$$u^t(x) = u(x', x_n + t), \text{ com } x \in \mathbb{R}^n \text{ e } t \in \mathbb{R}.$$

Para cada t, temos

$$\Delta u^t - F'(u^t) = 0 \text{ em } \mathbb{R}^n,$$

$$|u^t| + |\nabla u^t| \le C \text{ em } \mathbb{R}^n.$$

Note também que

$$\lim_{t \to +\infty} u^t(x) = 1 \text{ para todo } x \in \mathbb{R}^n.$$

Denotando por $\partial_t u^t(x)$ a derivada de u^t com respeito a t, temos

$$\partial_t u^t(x) = \partial_n u(x', x_n + t) > 0$$
 para todo $x \in \mathbb{R}^n$.

Afirmação: $\lim_{t\to+\infty} = E_R(u^t) = 0$.

De fato, temos $\lim_{t\to+\infty} F(u^t) - F(1) = 0$, pois F é contínua. Pelo Teorema da convergencia dominada de Lebesgue, temos

$$\lim_{t \to +\infty} \int_{B_R} \{ F(u^t) - F(1) \} = 0.$$

Também temos

$$0 = \Delta u^t - F'(u^t)$$

$$= (u^t - 1)\Delta u^t - (u^t - 1)F'(u^t)$$

$$= \int_{B_R} (u^t - 1)\Delta u^t dx - \int_{B_R} (u^t - 1)F'(u^t) dx$$

$$= -\int_{B_R} \nabla u^t \cdot \nabla u^t dx + \int_{\partial B_R} \frac{\partial u^t}{\partial \nu} (u^t - 1) d\sigma - \int_{B_R} (u^t - 1)F'(u^t) dx$$

Então

$$\int_{B_R} |\nabla u^t| dx = \int_{\partial B_R} (u^t - 1) \nu \nabla u^t d\sigma - \int_{B_R} (u^t - 1) F'(u^t) dx.$$

Novamente pelo Teorema da convergencia dominada de Lebesgue, obtemos

$$\lim_{t \to +\infty} \int_{B_R} |\nabla u^t| dx = 0.$$

Assim fica verificado a Afirmação.

Agora calcularemos a derivada de $E_R(u^t)$ com relação a t.

$$\partial_t E_R(u^t) = \partial_t \int_{B_R} \left\{ \frac{1}{2} |\nabla u^t|^2 + F(u^t) - F(1) \right\} dx$$

$$= \int_{B_R} \nabla u^t \cdot \nabla (\partial_t u^t) dx + \int_{B_R} F'(u^t) \partial_t u^t dx$$

$$= \int_{\partial B_R} \frac{\partial u^t}{\partial \nu} \partial_t u^t d\sigma - \int_{B_R} \partial_t u^t \Delta u^t dx + \int_{B_R} F'(u^t) \partial_t u^t dx$$

$$= \int_{\partial B_R} \frac{\partial u^t}{\partial \nu} \partial_t u^t d\sigma.$$

Sendo $|\nu\nabla u^t|$ limitado e $\partial_t u^t > 0$ ambos em \mathbb{R}^n , podemos tomar uma constante C > 0 tal que

$$|\partial_t E_R(u^t)| \le C \int_{\partial B_R} \partial_t u^t d\sigma,$$

em particular $\partial_t E_R(u^t) \geq -C \int_{\partial B_R} \partial_t u^t d\sigma$.

Para cada T > 0, pelo teorema Fundamental do Cálculo

$$E_{R}(u) = E_{R}(u^{T}) - \int_{0}^{T} \partial_{t} E_{R}(u^{t}) dt$$

$$\leq E_{R}(u^{T}) + C \int_{0}^{T} \int_{\partial B_{R}} \partial_{t} u^{t} d\sigma dx$$

$$= E_{R}(u^{T}) + C \int_{\partial B_{R}} \int_{0}^{T} \partial_{t} u^{t} dt d\sigma$$

$$= E_{R}(u^{T}) + C \int_{\partial B_{R}} (u^{t} - u) d\sigma$$

$$\leq E_{R}(u^{T}) + C_{1} \int_{\partial B_{R}} d\sigma$$

$$= E_{R}(u^{T}) + C_{1} n\omega_{n} R^{n-1}.$$

Seja $C = C_1 n \omega_n R^{n-1}$ e fazendo $T \to +\infty$, obtemos a estimativa desejada

$$E_R(u) \le CR^{n-1}$$
.

Proposição 2.1.1 Seja $\varphi\in L^\infty_{\mathrm{loc}}(\mathbb{R}^n)$ uma função positiva. Suponha que $\sigma\in H^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfaz

$$\sigma \nabla \cdot (\varphi^2 \nabla \sigma) \ge 0 \quad em \quad \mathbb{R}^n \tag{2.1}$$

no sentido de distribuição, para cada R > 1, assuma que

$$\int_{B_R} (\varphi \sigma)^2 \le CR^2, \tag{2.2}$$

para alguma constante C independente de R. Então σ é constante.

Demonstração: Seja $l: \mathbb{R}^+ \to \mathbb{R}$ de classe C^∞ tal que $0 \le l \le 1$ e

$$l(t) = \begin{cases} 1, & \text{se } 0 \le t \le 1\\ 0, & \text{se } t > 2 \end{cases}$$

Para R > 1, seja

$$\xi_R(x) = l\left(\frac{|x|}{R}\right)$$
 para $x \in \mathbb{R}^n$.

Multiplicando (2.1) por ξ_R^2 e integrando por parte em \mathbb{R}^n , obtemos

$$\int \xi_R^2 \varphi^2 |\nabla \sigma|^2 \leq -2 \int \xi_R \varphi^2 \sigma \nabla \xi_R \cdot \nabla \sigma$$

$$\leq 2 \left[\int_{R < |x| < 2R} \xi_R^2 \varphi^2 |\nabla \sigma|^2 \right]^{1/2} \left[\int \varphi^2 \sigma^2 |\nabla \xi_R|^2 \right]^{1/2}$$

$$\leq 4 \left[\int_{R < |x| < 2R} \xi_R^2 \varphi^2 |\nabla \sigma|^2 \right]^{1/2} \left[\frac{1}{R^2} \int (\varphi \sigma)^2 \right]^{1/2}$$

Usando a hipótese (2.2), obtemos

$$\int \xi_R^2 \varphi^2 |\nabla \sigma|^2 \le C \left[\int \xi_R^2 \varphi^2 |\nabla \sigma|^2 \right]^{1/2}, \tag{2.3}$$

com C independente de R. Isto implica que $\int \xi_R^2 \varphi^2 |\nabla \sigma|^2 \le C$ e fazendo $R \to +\infty$, temos

$$\int_{\mathbb{R}^n} \varphi^2 |\nabla \sigma|^2 \le C.$$

Note que o lado direito da desigualdade (2.3) tende para 0 quando $R \to +\infty$, logo

$$\int_{\mathbb{R}^n} \varphi^2 |\nabla \sigma|^2 = 0.$$

Com isso podemos concluir que σ é constante.

Finalmente a prova da conjectura de De Giorgi em dimensão 3, usando a estimativa de energia do Teorema 2.1.1, que nos permitirá aplicar o resultado tipo Lioville para a equação $\nabla \cdot (\varphi^2 \nabla \sigma_i) = 0$, onde $\varphi = \partial_n u$, $\sigma_i = \partial_i u / \partial_n u$.

Teorema 2.1.2 Seja u limitada e solução de

$$\Delta u - F'(u) = 0$$
 em \mathbb{R}^3

satisfazendo

$$\partial_3 u > 0$$
 em \mathbb{R}^3 e $\lim_{x_3 \to \pm \infty} u(x', x_3) = \pm 1$ para todo $x' \in \mathbb{R}^2$.

Assuma $F \in C^2(\mathbb{R})$ e que

$$F \ge \min\{F(-1), F(1)\}$$
 em $(-1, 1)$

Então os conjuntos de níveis de u são planos, isto é, existem $a \in \mathbb{R}^3$ e $g \in C^2(\mathbb{R})$ tais que

$$u(x) = g(a \cdot x)$$
 para todo $x \in \mathbb{R}^3$.

Demonstração: Tomando $\varphi = \partial_3 u$, $\sigma_i = \partial_i u / \partial_3 u$ para i = 1, 2, temos

$$\varphi^2 \nabla \sigma_i = \varphi^2 \left(\frac{\partial_3 u \nabla \partial_i u - \partial_i u \nabla \partial_3 u}{\varphi^2} \right).$$

Segue que

$$\nabla \cdot (\varphi^2 \nabla \sigma_i) = \partial_3 u \Delta \partial_i u - \partial_i u \Delta \partial_3 u$$

$$= \partial_3 u \Delta \partial_i u - \partial_i u \Delta \partial_3 u - F''(u) \partial_3 u \partial_i u + F''(u) \partial_3 u \partial_i u$$

$$= \partial_3 u (\Delta \partial_i u - F''(u) \partial_i u) - \partial_i u (\Delta \partial_3 u - F''(u) \partial_3 u) = 0$$

Nosso objetivo é aplicar a Proposição 2.1.1. E para isso ser possível é necessário verificar que

$$\int (\varphi \sigma_i)^2 = \int (\partial_i u)^2 \le CR^2, \tag{2.4}$$

para R > 1 e C independente de R.

Por hipótese $F \ge \min\{F(-1), F(1)\}$ em (-1, 1). Suponha primeiramente que $F(1) = \min\{F(-1), F(1)\}$, nesse caso

$$F(u) - F(1) \ge 0 \text{ em } \mathbb{R}^3.$$

Agora, aplicando o Teorema 2.1.1 em n=3, concluimos que

$$\frac{1}{2} \int_{B_R} |\varphi \sigma_i|^2 \le \frac{1}{2} \int_{B_R} |\nabla u|^2 \le \int_{B_R} \left\{ \frac{1}{2} |\nabla u|^2 + F(u) - F(1) \right\} \le CR^2.$$

O mesmo concluimos para o caso que $F(-1) = \min\{F(-1), F(1)\}$, apenas devemos substituir $u(x', x_n)$ por $-u(x', -x_n)$ e F(u) por F(-u). Portanto fica verificado (2.4). Logo pela Proposição 2.1.1, temos que σ_i é constante, em outras palavras, $\partial_i u = c_i \partial_n u$ para alguma constante c_i , i = 1, 2. Com isso temos

$$\nabla u = (c_1, c_2, 1) \partial_n u.$$

Isso implica que os conjuntos de níveis de u são planos ortogonais a $a=(c_1,c_2,1)$.

2.2 Conjectura de De Giorgi para n = 3

Nesta seção nosso objetivo é provar a Conjectura de De Giorgi para n=3 apresentado em [6]. Ou seja, não assumiremos que

$$u(x) \to \pm 1$$
 quando $x_3 \to \pm \infty$.

Isto é, queremos provar o seguinte Teorema.

Teorema 2.2.1 Seja u limitado e solução de

$$\Delta u - F'(u) = 0$$
 em \mathbb{R}^3

satisfazendo

$$\partial_3 u > 0$$
 em \mathbb{R}^3

Assuma $F \in C^2(\mathbb{R})$ e que

$$F \ge \min\{F(m), F(M)\}$$
 em (m, M)

para cada par de números reais m < M satisfazendo F'(m) = F'(M) = 0, $F''(m) \ge 0$ e $F''(M) \ge 0$. Então os conjuntos de nível de u são planos, isto é, existe $a \in \mathbb{R}^3$ e $g \in C^2(\mathbb{R})$ tal que

$$u(x) = g(a \cdot x)$$
 para todo $x \in \mathbb{R}^3$.

O resultado acima aplica-se ao caso $F'(u) = u^3 - u$.

Como na seção anterior, precisamos estabelecer a estimativa de energia $E_R(u) \le CR^2$. Na definição de $E_R(u)$ substituiremos o termo F(1) da seção anterior por $F(\sup u)$.

Podemos notar que há uma dificuldade em verificar

$$\lim_{t \to +\infty} E_R(u^t) = 0$$

desde que não se assuma $\lim_{x_3\to+\infty}u(x',x_3)=\sup u.$ Assim, consideremos a função

$$\bar{u}(x') = \lim_{x_3 \to +\infty} u(x', x_3)$$

que é solução da equação $\Delta u - F'(u) = 0$ em \mathbb{R}^2 .

Usando o método desenvolvido por Berestycki, Caffarelli e Nirenberg em [5], estabelecemos uma propriedade de estabilidade para \bar{u} que implicará que \bar{u} é realmente uma solução dependendo apenas de uma variável. Como consequência obtemos que a energia de \bar{u} em uma bola em dimensão 2 de raio R é limitado por CR e assim teremos

$$\lim_{t \to +\infty} \sup E_R(u^t) \le CR^2.$$

Começamos com um Lema que indica a propriedade da estabilidade de \bar{u} e suas consequências.

Lema 2.2.1 Seja $F \in C^2(\mathbb{R})$ e u limitada e solução de $\Delta u - F'(u) = 0$ em \mathbb{R}^n satisfazendo $\partial_n u > 0$ em \mathbb{R}^n . Então, a função

$$\bar{u}(x') = \lim_{x_n \to +\infty} u(x', x_3)$$
 (2.5)

é limitada e solução de

$$\Delta \bar{u} - F'(\bar{u}) = 0 \quad em \quad \mathbb{R}^{n-1} \tag{2.6}$$

e ,além disso, existe uma função positiva $\varphi \in W^{2,p}_{\mathrm{loc}}(\mathbb{R}^{n-1})$ para cada $1 \leq p < \infty$, tal que

$$\Delta \varphi - F''(\bar{u})\varphi \le 0 \quad em \quad \mathbb{R}^{n-1}. \tag{2.7}$$

Como consequência, se n=3, então \bar{u} é uma função que depende apenas de uma variável, mais precisamente:

- (a) \bar{u} é igual à constante M que satisfaz F''(M) = 0, ou
- (b) Existe $b \in \mathbb{R}^2$, com |b| = 1, e uma função $h \in C^2(\mathbb{R})$ tal que h' > 0 em \mathbb{R} e $\bar{u} = h(b \cdot x')$ para todo $x' \in \mathbb{R}^2$.

Demonstração: O caso que \bar{u} é uma solução de $\Delta \bar{u} - F'(\bar{u}) = 0$ em \mathbb{R}^{n-1} fica fácil verificar no momento que olharmos \bar{u} como uma função de n variáveis, limite das funções $u^t(x', x_n) = u(x', x_n + t)$ quando $t \to +\infty$. Assim $u^t \to \bar{u}$ uniformemente em C^1 para conjuntos compactos de \mathbb{R}^n .

Para provar a existencia de $\varphi > 0$ satisfazendo (2.7) usaremos que

$$\partial_n u > 0 \quad e \quad -\Delta \partial_n u + F''(u) \partial_n u = 0.$$
 (2.8)

Afirmação: $\int_{\mathbb{R}^{n-1}} (|\Delta \eta|^2 - F''(\bar{u})\eta^2) dx \ge 0$ para todo $\eta \in C_c^{\infty}(\mathbb{R}^{n-1})$.

Multiplicando $\xi^2/\partial_n u$ com $\xi \in C_c^{\infty}(\mathbb{R}^n)$ na equação (2.8) e integrando por parte

$$0 = \int_{\mathbb{R}^n} \frac{2\xi \partial_n u \nabla \xi - \xi^2 \nabla \partial_n u}{(\partial_n u)^2} \nabla \partial_n u \, dx + \int_{\mathbb{R}^n} F''(u) \xi^2 dx$$
$$= 2 \int_{\mathbb{R}^n} \frac{\xi}{\partial_n u} \nabla \partial_n u \cdot \nabla \xi \, dx - \int_{\mathbb{R}^n} \frac{\xi^2}{(\partial_n u)^2} |\nabla \partial_n u|^2 dx + \int_{\mathbb{R}^n} F''(u) \xi^2 dx$$

Segue que

$$2\int_{\mathbb{R}^n} \frac{\xi}{\partial_n u} \nabla \partial_n u \cdot \nabla \xi \ dx + \int_{\mathbb{R}^n} F''(u) \xi^2 dx = \int_{\mathbb{R}^n} \frac{\xi^2}{(\partial_n u)^2} |\nabla \partial_n u|^2 dx.$$

Pela desigualdade de Cauchy-Schwarz

$$2\left(\int_{\mathbb{R}^n} \frac{\xi^2}{(\partial_n u)^2} |\nabla \partial_n u|^2 dx\right)^{1/2} \left(\int_{\mathbb{R}^n} |\nabla \xi|^2 dx\right)^{1/2} + \int_{\mathbb{R}^n} F''(u) \xi^2 dx \ge \int_{\mathbb{R}^n} \frac{\xi^2}{(\partial_n u)^2} |\nabla \partial_n u|^2 dx.$$

Sabemos que $a^2 + b^2 \ge 2ab$ para todo $a, b \in \mathbb{R}$, logo

$$\int_{\mathbb{R}^n} \frac{\xi^2}{(\partial_n u)^2} |\nabla \partial_n u|^2 dx + \int_{\mathbb{R}^n} |\nabla \xi|^2 dx + \int_{\mathbb{R}^n} F''(u) \xi^2 dx \ge \int_{\mathbb{R}^n} \frac{\xi^2}{(\partial_n u)^2} |\nabla \partial_n u|^2 dx. \quad (2.9)$$

Por 2.9 podemos concluir que

$$\int_{\mathbb{R}^n} (|\nabla \xi|^2 + F''(u)\xi^2) dx \ge 0 \quad \text{para todo} \quad \xi \in C_c^{\infty}(\mathbb{R}^n). \tag{2.10}$$

Agora tomemos $\rho > 0$ e $\psi_{\rho} \in C^{\infty}(\mathbb{R})$ com $0 \leq \psi_{\rho} \leq 1$ tal que

$$\psi_{\rho}(t) = \begin{cases} 1, & \text{em } (\rho+1, 2\rho+1) \\ 0, & \text{se } (-\infty, \rho) \cup (2\rho+2, +\infty) \end{cases}$$

e $0 \le \psi_{\rho}' \le 2$. Seja $\xi = \eta(x')\psi_{\rho}(x_n)$, com $\eta \in C_c^{\infty}(\mathbb{R}^{n-1})$, por (2.10), temos

$$\int_{\mathbb{D}^n} \left[|\nabla (\eta(x')\psi_{\rho}(x_n))|^2 + F''(u)(\eta(x')\psi_{\rho}(x_n))^2 \right] dx \ge 0$$

Por $|\nabla \xi|^2 = \sum_{i=1}^n (\partial_i \xi)^2$ e pelo Teorema de Fubini, temos

$$\int_{\mathbb{R}} (\psi_{\rho})^{2} dx_{n} \int_{\mathbb{R}^{n-1}} |\nabla \eta|^{2} dx' + \int_{\mathbb{R}^{n-1}} \eta^{2} dx' \int_{\mathbb{R}} (\psi_{\rho}')^{2} dx_{n} + \int_{\mathbb{R}^{n-1}} \eta^{2} dx' \int_{\mathbb{R}} F''(u) (\psi_{\rho})^{2} dx_{n} \ge 0.$$

Dividindo a expressão por $\sigma_{\rho} = \int_{\mathbb{R}} (\psi_{\rho})^2 dx_n$, obtemos

$$\int_{\mathbb{R}^{n-1}} |\nabla \eta|^2 dx' + \int_{\mathbb{R}^{n-1}} \eta^2 dx' \int_{\mathbb{R}} \frac{(\psi_{\rho}')^2}{\sigma_{\rho}} dx_n + \int_{\mathbb{R}^{n-1}} \eta^2 dx' \frac{1}{\sigma_{\rho}} \int_{\mathbb{R}} F''(u) (\psi_{\rho})^2 dx_n \ge 0$$

Passando o limite quando $\rho \to +\infty$, consequentemente $x_n \to +\infty$. Pelo fato de $F \in C^2(\mathbb{R})$ e $u(x', x_n) \to \bar{u}(x')$ uniformemente em conjuntos compactos de \mathbb{R}^{n-1} , temos

$$F''(u(x',x_n)) \to F''(\bar{u}(x')),$$

uniformemente em conjuntos compactos de \mathbb{R}^{n-1} . Por outro lado temos $\sigma_{\rho} \to +\infty$, segue que

$$\int_{\mathbb{R}^{n-1}} (|\nabla \eta|^2 + F''(\bar{u})\eta^2) dx' \ge 0 \quad \text{para todo} \quad \eta \in C_c^{\infty}(\mathbb{R}^{n-1}). \tag{2.11}$$

Assim fica verificado a Afirmação.

A desigualdade (2.11)
implica que o primeiro autovalor λ_1^R de
 $-\Delta+F''(\bar{u})$ na bola $B_R'=\{x'\in\mathbb{R}^{n-1};|x'|< R\}$ é não negativo para cada
 R>1. Seja $\varphi_R>0$ a autofunção associada ao primeiro autovalor
 λ_1^R em B_R' , isto é,

$$\begin{cases}
-\Delta \varphi_R + F''(\bar{u})\varphi_R = \lambda_1^R \varphi_R & \text{em} \quad B_R \\
\varphi_R = 0 & \text{sobre} \quad \partial B_R
\end{cases}$$

$$(P_R)$$

normalizado com $\varphi_R(0)=1$. Note que λ_1^R decrescente quando $R\to +\infty$. Segue que $F''(\bar{u})-\lambda_1^R$ é limitado, como consequência a desigualdade de Harnack nos dá que φ_R são uniformementes limitados em conjuntos compactos de \mathbb{R}^{n-1} . Pelas $W^{2,p}$ estimativas podemos tomar uma subsequência de φ_R que converge em $W_{\text{loc}}^{2,p}$ para uma função positiva $\varphi\in W^{2,p}(\mathbb{R}^{n-1})$ para cada $1\leq p,\infty$, satisfazendo $\Delta\varphi_F''(\bar{u})\geq 0$ em \mathbb{R}^{n-1} .

Agora assuma n = 3. Para cada i = 1, 2, considere a função

$$\sigma_i = \frac{\partial_i \bar{u}}{\varphi} \text{ em } \mathbb{R}^2.$$

Note que σ_i é bem definido e temos regularidade suficiente para calcular

$$\nabla \cdot (\varphi^2 \nabla \sigma_i) = \varphi \Delta \partial_i \bar{u} - \partial_i \bar{u} \Delta \varphi$$

e portanto

$$\sigma_{i} \nabla \cdot (\varphi^{2} \nabla \sigma_{i}) = \partial_{i} \bar{u} \Delta \partial_{i} \bar{u} - \frac{(\partial_{i} \bar{u})^{2}}{\varphi} \Delta \varphi$$

$$= (\partial_{i} \bar{u})^{2} F''(\bar{u}) - \frac{(\partial_{i} \bar{u})^{2}}{\varphi} \Delta \varphi$$

$$= \frac{(\partial_{i} \bar{u})^{2}}{\varphi} (F''(\bar{u}) \varphi - \Delta \varphi) \geq 0$$

Note também que

$$\int_{B_R} (\varphi \sigma_i)^2 = \int_{B_R} (\partial_i \bar{u})^2 \le \int_{B_R} |\nabla \bar{u}|^2 = -\int_{B_R} F'(\bar{u}) \bar{u} \le C,$$

onde c é uma constante independente de R. Agora aplicando a Proposição 2.1.1, concluímos que σ_i é constante, isto é,

$$\partial_i \bar{u} = c_i \varphi$$

para alguma constante c_i . Se $c_1 = c_2 = 0$, então \bar{u} é igual a uma constante M. E por 2.11 podemos facilmente concluir que $F''(M) \geq 0$. No caso de pelo menos um c_i for diferente de zero, então \bar{u} é constante ao longo da direção $(c_2, -c_1)$, pois

$$\nabla \bar{u} = \varphi(c_1, c_2).$$

Assim tomando $b = (c_1, c_2)/|(c_1, c_2)|$, teremos $\bar{u}(x') = h(b \cdot x')$ em \mathbb{R}^2 para alguma função h. Veja que $c_i \varphi = \partial_i \bar{u} = h'(b \cdot x') c_i |(c_1, c_2)|^{-1}$, logo $h'(b \cdot x') = \varphi |(c_1, c_2)| > 0$ em \mathbb{R} .

Lema 2.2.2 Seja F uma função de classe $C^2(\mathbb{R})$.

i) Suponha que exista uma função $h \in C^2(\mathbb{R})$ satisfazendo

$$h'' - F'(h) = 0 \quad e \quad h' > 0 \quad em \quad \mathbb{R}$$
 (2.12)

Seja $m_1 = \inf_{\mathbb{R}} h$ e $m_2 = \sup_{\mathbb{R}} h$. Então, temos

$$F'(m_1) = F'(m_2) = 0, (2.13)$$

$$F > F(m_1) = F(m_2)$$
 em $(m_1, m_2),$ (2.14)

e

$$\int_{-\infty}^{+\infty} \left\{ \frac{1}{2} h'(s)^2 + F(h(s)) - F(m_2) \right\} ds < +\infty.$$
 (2.15)

ii) Reciprocamente, seja $m_1 < m_2$ e F satisfazendo (2.13) e (2.14). Então existe uma solução crescente h de h'' - F(h) = 0 em \mathbb{R} , com $\lim_{s \to +\infty} h(s) = m_1$ e $\lim_{s \to +\infty} h(s) = m_2$. Tal solução é única a menos de translação da variável independente s.

Demonstração:

i) Multiplicando a equação 2.12 por -2h' e integrando, temos

$$-(h')^2 + 2F(h) = c,$$

para uma certa constante c. Sendo h crescente, pois h' > 0, temos

$$\lim_{s \to -\infty} h(s) = m_1 \quad \text{e} \quad \lim_{s \to +\infty} h(s) = m_2.$$

Com isso, temos que h converge para as funções constantes $g_1(s) := m_1$ e $g_2(s) := m_2$ quando $s \to -\infty$ e $s \to +\infty$, respectivamente. Logo

$$\lim_{s \to \pm \infty} h'(s) = 0.$$

Sendo $-(h')^2 + 2F(h) = c$, pelos dois últimos resultados podemos concluir que $F(m_1) = F(m_2) = c/2$ e $F(h(s)) = c/2 + (h'(s))^2/2 > c/2$. Logo

$$F(h(s)) > F(m_1) = F(m_2)$$
 em (m_1, m_2)

Agora verificaremos 2.13 e 2.15. Dado a < b, sejam $\{a_m\}$ e $\{b_m\}$ sequências onde $a_m = a + m$ e $b_m = b + m$. Pelo Teorema do Valor Médio, existe $\{c_m\}$ com $c_m \in (a_m, b_m)$ para todo $m \in \mathbb{N}$ tal que

$$h''(c_m) = \frac{h'(b_m) - h'(a_m)}{b - a}.$$

Pela igualdade acima podemos notar que $\lim_{s\to+\infty} h''(s) = 0$. Se em vez de $a_m = a + m$ e $b_m = b + m$, tivermos $a_m = a - m$ e $b_m = b - m$, concluiremos que $\lim_{s\to-\infty} h''(s) = 0$. Logo

$$F'(m_1) = F'(m_2) = 0.$$

Por mudança de variável

$$\int_{m_1}^{m_2} \sqrt{2F(t) - 2F(m_2)} dt = \int_{-\infty}^{+\infty} \sqrt{2F(h(s)) - 2F(m_2)} h'(s) ds = \int_{-\infty}^{+\infty} (h'(s))^2 ds.$$

Logo

$$\int_{-\infty}^{+\infty} \left\{ \frac{1}{2} h'(s)^2 + F(h(s)) - F(m_2) \right\} ds = \int_{-\infty}^{+\infty} (h'(s))^2 ds \le (m_2 - m_1) \sqrt{2D},$$

onde
$$D = \sup_{t \in (m_1, m_2)} F(t) - F(m_2)$$
.

ii) Seja $m \in (m_1, m_2)$, definamos $\phi : (m_1, m_2) \to \mathbb{R}$ por

$$\phi(t) = \int_{m}^{t} \frac{1}{\sqrt{2f(z) - F(m_2)}} dz.$$

Note que por (2.14) ϕ está bem definida e sendo $\phi'(t) = \frac{1}{\sqrt{2f(z) - F(m_2)}} > 0$, ϕ possui inversa. Seja $h : \mathbb{R} \to (m_1, m_2)$ a inversa de ϕ , então temos

$$s = \phi(h(s)) = \int_{m}^{h(s)} \frac{1}{\sqrt{2f(z) - F(m_2)}} dz = \int_{0}^{s} \frac{h'(y)}{\sqrt{2f(h(y)) - F(m_2)}} dy,$$

segue que

$$\int_0^s \frac{h'(y)}{\sqrt{2f(h(y)) - F(m_2)}} dy = \int_0^s 1 dy.$$

Pelo o que acabamos de ver, podemos concluir que

$$h'(y) = \sqrt{2f(h(y)) - F(m_2)} > 0 \text{ em } \mathbb{R}.$$
 (2.16)

Sendo h crescente,

$$\lim_{s \to -\infty} h(s) = m_1 \quad \text{e} \quad \lim_{s \to +\infty} h(s) = m_2.$$

E pela igualdade $h'(y) = \sqrt{2f(h(y)) - F(m_2)}$, temos

$$h'' - F(h) = 0$$
 em \mathbb{R} .

Finalmente, damos a

Demonstração do Teorema 2.2.1: Sendo $\partial_3 u > 0$, a prova do teorema 2.1.2 mostra que o Teorema 2.2.1 é estabelecido se provarmos que para cada R > 1, temos que

$$\int_{B_R} |\nabla u|^2 \le CR^2,$$

para alguma constante C independente de R.

Sejam

$$m = \inf_{\mathbb{R}^3} u$$
 e $M = \sup_{\mathbb{R}^3} u$,

e considere as funções

$$\underline{u}(x') = \lim_{x_3 \to -\infty} u(x', x_3)$$
 e $\overline{u}(x') = \lim_{x_3 \to +\infty} u(x', x_3)$.

Note que $\underline{u} < \overline{u}$, pois $\partial_n u > 0$ e $m = \inf_{\mathbb{R}^2} \underline{u}$ e $M = \sup_{\mathbb{R}^2} \overline{u}$. Aplicando o Lema 2.2.1, se \overline{u} for constante, então necessariamente $\overline{u} = M$ em \mathbb{R}^2 , F'(M) = 0 por

2.6 e $F''(M) \ge 0$ tal como indicado no Lema. No caso (b) do Lema 2.2.1, temos $\overline{u}(x') = h(b \cdot x)$, com |b|=1. Logo

$$0 = \Delta \overline{u} - F'(\overline{u}) = |b|^2 h'' - F'(h) = h'' - F'(h).$$

Sendo $m = \inf_{\mathbb{R}} h$ e $M = \sup_{\mathbb{R}} h$, segue pelo Lema 2.2.2 que F'(M) = 0 e usando 2.14 que $F''(M) \ge 0$. Em todo caso, temos sempre

$$F'(M) = 0$$
 e $F''(M) \ge 0$.

De forma análoga verificamos com \underline{u} , simplesmente substituindo $u(x', x_3)$ por $-u(x', -x_3)$, e F(u) por F(-u), que

$$F'(m) = 0$$
 e $F''(m) \ge 0$.

Por hipótese $F \geq \{F(m), F(M)\}$ em (m, M). Suponha que $F(M) = \min\{F(m), F(M)\}$ (o outro caso é verificado fazendo a mesma mudança anterior de u e F). Então, $F(u) - F(M) \geq 0$ em \mathbb{R}^3 . Assim, o teorema será provado se mostrarmos que

$$\int_{B_R} \left\{ \frac{1}{2} |\nabla u|^2 + F(u) - F(M) \right\} dx \le CR^2$$

para cada R > 1.

Para esta verificação, vamos proceder como na prova do Teorema 2.1.1. Ou seja, consideramos as funções $u^t(x) = u(x', x_n + t), \ x = (x', x_3) \in \mathbb{R}^3$ e $t \in \mathbb{R}$ e a energia de u^t na bola B_R , definida por

$$E_R(u^t) = \int_{B_R} \left\{ \frac{1}{2} |\nabla u^t|^2 + F(u^t) - F(M) \right\} dx.$$

Precisamos mostrar que $E_R(u) = E_R(u^0) \le CR^2$. Note que utilizando dos mesmos cálculos, podemos obter como na prova do Teorema 2.1.1

$$\partial_t E_R(u^t) \ge -C \int_{\partial B_R} \partial_t u^t d\sigma$$

e

$$E_R(u) \le E_R(u^t) + CR^2$$
 para $t > 0$.

Pela última desigualdade, vemos que $E_R(u) \leq CR^2$ se verificarmos

$$\limsup_{t \to +\infty} E_R(u^t) \le CR^2.$$

Essa desigualdade é uma consequência direta dos Lemas 2.2.1 e 2.2.2(i). De fato, usando estimativas elípticas e que $u^t(x)$ e crescente em B_R para $\overline{u}(x')$ quando $t \to +\infty$, temos

$$\lim_{t \to +\infty} E_R(u^t) = \int_{B_R} \left\{ \frac{1}{2} |\nabla \overline{u}(x')|^2 + F(\overline{u}(x')) - F(M) \right\} dx$$

$$\leq CR \int_{B_R} \left\{ \frac{1}{2} |\nabla \overline{u}(x')|^2 + F(\overline{u}(x')) - F(M) \right\} dx',$$

onde $B'_R = \{|x'| < R\}$. Mas a última integral é calculada em uma bola bidimensional, logo delimitada por CR. Sendo u uma função de uma única variável (pelo Lema 2.2.1), e nesta variável a energia é integrável em toda a reta real, por 2.15. A prova está concluída.

Apêndice A

Apêndice

A.1 Resultados Auxiliares

Neste apêndice, listamos alguns resultados importantes que são utilizados no decorrer do nosso trabalho.

Teorema A.1.1 ([3], Teorema 5.6) Seja (f_m) uma sequência de funções de $L^1(\Omega)$. Suponhamos que:

- (i) $f_m(x) \to f(x)$ q.t.p em Ω ,
- (ii) existe $g \in L^1(\Omega)$ tal que para todo $n \ge 1$, temos

$$|f_m(x)| \le g(x)$$
 q.t.p em Ω .

Então $f \in L^1(\Omega)$ e

$$\lim_{m\to\infty} ||f_m - f||_{L^1(\Omega)} \to 0,$$

isto é,

$$\int_{\Omega} f(x) \ dx = \lim_{m \to \infty} \int_{\Omega} f_m(x) \ dx.$$

Teorema A.1.2 ([4], Teorema IV.9) Sejam (f_m) uma sequência de $L^p(\Omega)$ e $f \in L^p(\Omega)$, tais que

$$||f_m - f||_{L^p(\Omega)} \to 0.$$

Então podemos extrair uma subsequência (f_{m_k}) tal que

(i)
$$f_{m_k}(x) \rightarrow f(x)$$
 q.t.p em Ω e

(ii) $|f_{m_k}(x)| \leq h(x), \forall k \quad q.t.p \ em \ \Omega, \ com \ h \in L^p(\Omega).$

Teorema A.1.3 ([4], Proposicão III.5) Seja E um espaço de Banach e (x_m) uma sequência em E. Se $x_m \rightharpoonup x$ fracamente na topologia fraca de E, então $||x_m||$ é limitada e

$$||x|| \le \liminf_{m \to \infty} ||x_m||.$$

Teorema A.1.4 ([4], Teorema III.27) Sejam E um espaço de Banach reflexivo $e(x_m)$ uma sequência limitada em E; então existe uma subsequência (x_{m_k}) que converge na topologia fraca de E.

Teorema A.1.5 ([8], Desigualdade de Poincaré) Sejam Ω um aberto, limitado e conexo de \mathbb{R}^n , com $\partial\Omega$ de classe C^1 e $1 \leq p \leq \infty$. Então, existe uma constante C, dependendo apenas de n, p e Ω , tal que

$$||u - u_{\Omega}||_{L^{p}(\Omega)} \le C||\nabla u||_{L^{p}(\Omega)}$$

para toda função $u \in W^{1,p}(\Omega)$. Em particular, sobre o espaço $V = \{v \in W^{1,p}(\Omega) : u_{\Omega} = 0\}$, temos que $\|\nabla u\|_{L^p(\Omega)}$ é uma norma equivalente a norma de $W^{1,p}(\Omega)$.

Teorema A.1.6 ([4], Corolário IX.14) Seja $\Omega \subset \mathbb{R}^n$ um aberto limitado de classe C^1 , com fronteira limitada, e $1 \le p \le \infty$. Então,

$$\begin{cases} se & 1 \leq p \leq n, \quad ent\tilde{a}o \quad W^{1,p}(\Omega) \subset L^{p^*}(\Omega), \\ se & p = n, \quad ent\tilde{a}o \quad W^{1,p}(\Omega) \subset L^q(\Omega) \ \forall q \in [p,\infty), \\ se & p > n, \quad ent\tilde{a}o \quad W^{1,p}(\Omega) \subset L^\infty(\Omega) \end{cases}$$

com injecões contínuas.

Teorema A.1.7 ([4], Teorema IX.16 (Rellich-Kondrachov) Seja $\Omega \subset \mathbb{R}^n$ um aberto limitado de classe C^1 . Temos:

$$\begin{cases} se & 1 \leq p \leq n, \quad ent\tilde{a}o \quad W^{1,p}(\Omega) \subset L^q(\Omega) \ \forall q \in [1,p^*), \\ se & p = n, \quad ent\tilde{a}o \quad W^{1,p}(\Omega) \subset L^q(\Omega) \ \forall q \in [1,\infty), \\ se & p > n, \quad ent\tilde{a}o \quad W^{1,p}(\Omega) \subset C(\overline{\Omega}) \end{cases}$$

com injeções compactas.

Definição A.1.1 Sejam X um espaço de Banach, $F \in C^1(X,\mathbb{R})$ e um conjunto de vínculos:

$$S := \{ u \in X : F(v) = 0 \}.$$

Suponhamos que para todo $u \in S$, temos que $F'(u) \neq 0$. Seja $J \in C^1(X,\mathbb{R})$. Dizemos que $c \in \mathbb{R}$ é valor crítico de J sobre S se existem $u \in S$ e $\lambda \in \mathbb{R}$ tais que J(u) = c e $J'(u) = \lambda F'(u)$. O ponto u é um ponto crítico de J sobre S e o número real λ é chamado multiplicador de Lagrande para o valor crítico c.

Teorema A.1.8 ([12], Multiplicadores de Lagrange) Sob as hipóteses e notações da definição acima, suponhamos que $u_0 \in S$ é tal que

$$J(u_0) = \inf_{u \in S} J(u).$$

Então existe $\lambda \in \mathbb{R}$ tal que

$$J'(u_0) = \lambda F'(u_0).$$

Teorema A.1.9 ([10], Teorema 8.20) Considere o operador $Lu = -\Delta u - Vu$, onde $V \in L^{\infty}(\mathbb{R}^n)$. Se $u \in W^{1,2}(\Omega)$ é uma função não negativa satisfazendo no sentido fraco:

$$Lu = 0$$
 em Ω ,

então para qualquer bola $B_{4R}(y) \subset \Omega$, temos

$$\sup_{B_R(y)} u \le C \inf_{B_R(y)} u,$$

onde C=C(n,R).

Teorema A.1.10 ([8], Desigualdade de Harnack - pag 334) $Seja \ u \ge 0 \ de$ $classe \ C^2 \ e \ solução \ de$

$$Lu = 0$$
 em U ,

e suponha $V \subset\subset U$ conexo. Então existe uma constante C tal que

$$\sup_{V} u \le C \inf_{V} u.$$

A constante C depende apenas de V e dos coeficientes de L.

Definição A.1.2 Seja $\varphi: U \longrightarrow \mathbb{R}$ onde U é um aberto de um espaço de Banach X. O funcional φ é Gateaux diferenciável em $u \in U$ se existe $f \in X'$, tal que para todo $h \in X$,

$$\lim_{t\to 0} \frac{1}{t} [\varphi(u+th) - \varphi(u) - \langle f, th \rangle] = 0$$

Se o limite acima existe, ele é único e a derivada de Gateaux em u será denotada por $\varphi'(u)$, e dada por

$$\langle \varphi'(u), h \rangle := \lim_{t \to 0} \frac{1}{t} [\varphi(u + ht) - \varphi(u)].$$

O funcional φ tem derivada a Fréchet $f \in X'$ em u se

$$\lim_{h \to 0} \frac{1}{\|h\|} [\varphi(u+h) - \varphi(u) - \langle f, h \rangle] = 0.$$

Teorema A.1.11 Seja $\Omega \subset \mathbb{R}^n$ aberto. Então, para todo k e para todos $0 < \alpha < \beta \le 1$ valem as seguintes imersões:

$$\begin{array}{ccc} C^{k+1}(\overline{\Omega}) & \hookrightarrow & , C^k(\overline{\Omega}), \\ C^{k,\alpha}(\overline{\Omega}) & \hookrightarrow & , C^k(\overline{\Omega}), \\ C^{k,\beta}(\overline{\Omega}) & \hookrightarrow & C^{k,\alpha}(\overline{\Omega}). \end{array}$$

Se Ω é limitado, então as duas últimas imersões são compactas e se Ω é convexo e limitado, todas as três imersões são compactas. Se Ω é convexo, valem duas imersões adicionais

$$\begin{array}{ccc} C^{k+1}(\overline{\Omega}) & \hookrightarrow &, C^{k,1}(\overline{\Omega}), \\ C^{k+1}(\overline{\Omega}) & \hookrightarrow &, C^{k,\alpha}(\overline{\Omega}). \end{array}$$

sendo que a última é compacta se Ω for também limitado.

Lema A.1.1 ([10], Lema 6.16) Seja $u \in C^2(\Omega)$ solução da equação Lu = f em um conjunto aberto Ω , onde f e os coeficientes do operador elíptico L são $C^{\alpha}(\Omega)$. Então $u \in C^{2,\alpha}(\Omega)$.

Teorema A.1.12 ([10], Corolário 6.3) Seja $\Omega \subset \mathbb{R}^n$ um domínio limitado. Se $u \in C^{2,\alpha}(\Omega)$ e $f \in C^{\alpha}(\overline{\Omega})$ satisfaz

$$Lu = f \ em \ \Omega,$$

onde L é um operador elíptico com coeficientes em $C^{\alpha}(\overline{\Omega})$, e $\Omega' \subset\subset \Omega$ com $dist(\Omega', \partial\Omega) \geq d$. Então, existe uma constante C > 0 tal que

$$d||Du||_{C(\Omega')} + d^2||D^2u||_{C(\Omega')} + d^{2+\alpha}||D^2u||_{C^{\alpha}(\Omega')} \le C(||u||_{C(\Omega)} + ||f||_{C^{\alpha}(\Omega)}),$$

onde C depende apenas da constante elíptica λ e da norma $C^{\alpha}(\Omega)$ dos coeficientes de L.

Teorema A.1.13 ([10], Teorema 9.11) Sejam $\Omega \subset \mathbb{R}^n$ um subconjunto aberto e L um operador estritamente elíptico. Se $W^{2,p}_{loc}(\Omega) \cap L^P(\Omega)$, é uma solução forte da equação

$$Lu = f \ em \ \Omega,$$

onde os coeficientes de L são contínuos e limitados e $f \in L^P(\Omega)$, então para qualquer domínio $\Omega' \subset\subset \Omega$, existe $C = C(n, p, \Omega', \Omega)$ tal que

$$||u||_{W^{2,p}(\Omega')} \le C(||u||_{L^p(\Omega)} + ||f||_{L^p(\Omega)}).$$

Teorema A.1.14 ([8], Teorema 6, p.270) Seja Ω um subconjunto aberto e limitado do \mathbb{R}^n , com fronteira de classe C^1 . Suponha que $u \in W^{k,p}(\Omega)$.

(i) Se $k < \frac{n}{p}$, então $u \in L^p(\Omega)$, onde $\frac{1}{q} = \frac{1}{p} - \frac{k}{n}$. Além disso, temos a estimativa $||u||_{L^q(\Omega)} \le C||u||_{W^{k,p}(\Omega)},$

onde $C = C(k, p, n, \Omega) > 0$.

(ii) Se $k > \frac{n}{p}$, então $u \in C^{k-[\frac{n}{p}]-1,\alpha}(\overline{\Omega})$, onde

$$\alpha = \left\{ \begin{array}{ll} \left[\frac{n}{p}\right] + 1 - \frac{n}{p}, & se \ \frac{n}{p} \ n\tilde{a}o \ \acute{e} \ um \ inteiro \\ qualquer \ \gamma < 1, & se \ \frac{n}{p} \ \acute{e} \ um \ inteiro. \end{array} \right.$$

Além disso, temos a estimativa

$$||u||_{C^{k-\left[\frac{n}{p}\right]-1,\alpha}(\overline{\Omega})} \le C||u||_{W^{k,p}(\Omega)},$$

onde $C = C(k, p, n, \alpha, \Omega) > 0$.

Lema A.1.2 Seja ϕ uma função de classe $C^1(\mathbb{R})$ com $\phi(0) = 0$ e suponha $|\phi'(t)| \le C|\phi(t)| \ \forall t \in \mathbb{R}$, onde C é uma constante positiva. Então $\phi = 0$ em \mathbb{R} .

Demonstração: Seja $t_0 \in \mathbb{R}$, pelo teorema do valor médio, existe $c_1 \in (0, t_0)$ tal que

$$\phi'(c_1) = \frac{\phi(t_0) - \phi(0)}{t_0 - 0} = \frac{\phi(t_0)}{t_0}.$$

Com isso temos

$$|\phi(t_0)| \le C|t_0||\phi(c_1)|.$$
 (A.1)

Novamente pelo teorema do valor médio, existe $c_2 \in (0, c_1)$ tal que $\phi'(c_2) = \phi(c_1)/c_1$, substituindo em A.1, temos

$$|\phi(t_0)| \le C|t_0||c_1||\phi'(c_2)|.$$

Continuando o processo, obtemos

$$|\phi(t_0)| \le C|t_0||c_1| \cdot \dots \cdot |c_n||\phi'(c_{n+1})| \le C^2|t_0||c_1| \cdot \dots \cdot |c_n||\phi(c_{n+1})|.$$

Sendo que $c_n \to 0$ quando $n \to \infty$, podemos tomar $n_0 \in \mathbb{N}$ tal que $|c_n| < 1$ para $n > n_0$, logo

$$|\phi(t_0)| \le C^2 |t_0||c_1| \cdot \dots \cdot |c_{n_0}||\phi(c_{n+1})|.$$

Sendo $C^2|t_0||c_1|\cdot\ldots\cdot|c_{n_0}|$ limitado e $\phi(c_n)\to 0$ quando $n\to\infty$, obtemos que $\phi(t_0)=0$.

Teorema A.1.15 ([10],Corolário 3.2 - Princípio do Máximo Fraco) Seja L um operador elíptico com domínio Ω limitado. Suponha que em Ω , $Lu \geq 0 \ (\leq 0)$ e $c \leq 0$, com $u \in C(\overline{\Omega})$, $Ent\tilde{a}o$

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+ \left(\inf_{\Omega} u \ge \inf_{\partial \Omega} u^- \right)$$

Se Lu = 0 em Ω , $Ent\tilde{a}o$

$$\sup_{\Omega}|u|=\sup_{\partial\Omega}|u|.$$

Teorema A.1.16 ([10],Teorema 4.6 - Estimativa Interior) Sejam Ω um domínio de \mathbb{R}^n e $u \in C^2(\Omega)$, $f \in C^{\alpha}(\Omega)$ tal que $\Delta u = f$ em Ω . Então $u \in C^{2,\alpha}(\Omega)$ e para qualquer bola $B_{2R}(y) \subset\subset \Omega$, temos

$$||u||_{C^{2,\alpha}(B_R(y))} \le C(||u||_{L^{\infty}(B_{2R}(y))} + ||f||_{c^{\alpha}(B_{2R}(y))}),$$

onde $C = C(n, \alpha)$.

Referências Bibliográficas

- [1] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in 3 and a conjecture of De Giorgi, J. Amer. Math. Soc.,13(2000).
- [2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society. Conference board of the mathematical sciences regional conference series in mathematics, no 65, Rhode Island, 1988.
- [3] R. G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley, New York, 1995.
- [4] H. Brezis, Analyse Fonctionelle, Theorie et Applications, Masson, Paris, 1987.
- [5] H. Berestycki, L. Caffarelli and L. Nirenberg, Futher qualitative properties for elliptic equations in unbounded domains, Dedicated to Ennnio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4)25(1997).
- [6] E. De Giorgi, Convergence problemas for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1983), 131-188.
- [7] Ekeland I., On The Variational Principle, J. Math. Appl. 47(1974) 324-353.
- [8] Evans, L. C. Partial Differential Equations, Graduate Studies in mathematics, American Mathematical Society, Volume 19, 1998.
- [9] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Ann. Math. 311 (1998), 481-491.
- [10] D. Gilbarg,; Trudinger, N. S. Elliptic Partial Differential Equations of Second Order, Springer Verlag, 2001.
- [11] E. L. LIMA, *Curso de Análise Vol. 2* (10 Edição), Projeto Euclides. Rio de Janeiro, IMPA/CNPq, p. 546

- [12] O. Kavian, Introduction à la théorie des points critiques, Springer-Verlag France, Paris, 1993.
- [13] L. Modica, A gradient bound and a Liouville theorem for non linear Poisson equations, Comm. Pure. Appl. Math. 38 (1985), 679-684.