# 1. Integrais Duplas

| 1.1 | Introdução                               | 6  |
|-----|------------------------------------------|----|
| 1.2 | Integrais Duplas sobre Retângulos        | 6  |
| 1.3 | Significado Geométrico da Integral Dupla | 8  |
| 1.4 | Propriedades da Integral Dupla           | 8  |
| 1.5 | Integração Dupla em Regiões mais Gerais  | 10 |
| 1.6 | Mudança de Coordenadas                   | 13 |
| 1.7 | Coordenadas Polares                      | 18 |
| 1.8 | Simetria em Integrais Duplas             | 19 |
| 1.9 | Aplicações da Integral Dupla             | 21 |

### 1.1 Introdução

Neste capítulo vamos estudar integrais duplas, começamos definindo estas integrais sobre retângulos para logo generalizar a definição a domínios mais gerais. A seguir, fazemos algumas mudanças de coordenadas que podem nos ajudar no cálculo das integrais duplas e, por último, veremos algumas aplicações.

# 1.2 Integrais Duplas sobre Retângulos

Consideremos uma função limitada  $f : \mathcal{R} \to \mathbb{R}$ , onde  $\mathcal{R} := [a, b] \times [c, d]$  é um retângulo em  $\mathbb{R}^2$ , ou seja,

$$\mathcal{R} = \left\{ (x.y) \in \mathbb{R}^2 : a \le x \le b, \ c \le y \le d \right\}.$$

Sejam  $\mathcal{P}_1 := \{x_0, x_1, ..., x_n\}$  e  $\mathcal{P}_2 := \{y_0, y_1, ..., y_n\}$  partições dos intervalos [a, b] e [c, d], respectivamente, tais que  $a = x_0 < x_1 < ... < x_n = b$ ,  $c = y_0 < y_1 < ... < y_n = d$ ,

$$x_{i+1} - x_i = \frac{b-a}{n}$$
 e  $y_{j+1} - y_j = \frac{d-c}{n}$ .

Notemos que  $\mathcal{P}_1 \times \mathcal{P}_2$  é uma partição do retângulo  $\mathcal{R}$  e os  $n^2$  subretângulos da forma

$$\mathcal{R}_{ij} := [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

com  $i, j \in \{0, ..., n-1\}$ , cobrem  $\mathcal{R}$ .

Sejam  $c_{ij} \in \mathcal{R}_{ij}$ , i, j = 0, 1, ..., n - 1, um ponto arbitrário e consideremos a soma

$$S_n := \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f(c_{ij}) \Delta x \Delta y, \quad \text{onde,} \quad \Delta x = \frac{b-a}{n} \quad \text{e} \quad \Delta y = \frac{d-c}{n}.$$

 $S_n$  diz-se Soma de Riemann de f sobre  $\mathcal{R}$ .

**Definição 1.1** Dizemos que  $f: \mathcal{R} \to \mathbb{R}$  é integrável sobre  $\mathcal{R}$  se, e somente se,  $\lim_{n \to \infty} S_n$  existe, qualquer que seja a escolha dos  $c_{ij} \in \mathcal{R}_{ij}$  e quaisquer que sejam as partições  $\mathcal{P}_1$  e  $\mathcal{P}_2$ .

Neste caso, denotamos o  $\lim_{n\to\infty} S_n$  por:  $\int_{\mathcal{R}} f(x,y)dxdy$  ou  $\int_{\mathcal{R}} fdA$  e chamamos de integral dupla de f sobre  $\mathcal{R}$ .

Teorema 1.2 Se  $f : \mathbb{R} \to \mathbb{R}$  é uma função limitada e contínua, então f é integrável em  $\mathbb{R}$ .

**Exemplo 1.3** Calculemos, usando as somas de Riemann, a integral dupla da função  $f(x,y)=x^2y$  sobre o retângulo  $\mathcal{R}=[0,1]\times[0,1]$ . Consideremos a partição  $\mathcal{P}=\{0<\frac{1}{n}<\frac{2}{n}<...<\frac{n-1}{n}<\frac{n}{n}=1\}$  de [0,1], a partição  $\mathcal{P}\times\mathcal{P}$  de  $\mathcal{R}$  e tomemos  $c_{ij}=(\frac{i}{n},\frac{j}{n})$ . Nas notações anteriores temos:

$$a = c = 0$$
,  $b = d = 1$ ,  $x_i = \frac{i}{n}$ ,  $y_j = \frac{j}{n}$ ,  $\Delta x = \Delta y = \frac{1}{n}$ .

$$S_{n} = \sum_{i=0}^{n} \sum_{j=0}^{n} f(c_{ij}) \Delta x \Delta y = \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_{i}, y_{j}) \Delta x \Delta y$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} (x_{i})^{2} \cdot y_{j} \cdot \frac{1}{n} \cdot \frac{1}{n} = \sum_{i=0}^{n} \sum_{j=0}^{n} \left(\frac{i}{n}\right)^{2} \cdot \frac{j}{n} \cdot \left(\frac{1}{n}\right)^{2}$$

$$= \left(\frac{1}{n}\right)^{5} \sum_{i=0}^{n} \left(\sum_{j=0}^{n} j\right) i^{2} = \frac{1}{n^{5}} \sum_{i=0}^{n} \frac{n(n+1)}{2} i^{2} = \frac{1}{n^{5}} \frac{n(n+1)}{2} \sum_{i=0}^{n} i^{2}$$

$$= \frac{n+1}{2n^{4}} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)^{2}(2n+1)}{12n^{3}}.$$

Assim,  $\int_{\mathcal{R}} f dA = \int_{\mathcal{R}} f(x, y) dx dy = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{(n+1)^2 (2n+1)}{12n^3} = \frac{1}{6}.$ 

Logo, 
$$\int_{\mathcal{R}} x^2 y dx dy = \frac{1}{6}$$

Usamos aqui dois fatos que supomos conhecidos, são estes:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \qquad \text{e} \qquad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Neste exemplo vemos que o cálculo de integrais duplas usando as somas de Riemann pode não ser uma tarefa fácil. O teorema de Fubini $^a$ , que veremos logo adiante, simplificará estes cálculos.

<sup>&</sup>lt;sup>a</sup>Guido Fubini (19 de janeiro de 1879 Veneza-Itália - 6 de junho de 1943 Nova Iorque-EUA)

### 1.3 Significado Geométrico da Integral Dupla

Seja  $f: \mathcal{R} \to \mathbb{R}$  uma função contínua, note que sendo  $\mathcal{R}$  compacto, (fechado e limitado), f é uma função limitada. Suponhamos que,  $\forall (x,y) \in \mathcal{R}$ ,  $f(x,y) \geq 0$  e seja  $W \subset \mathbb{R}^3$  o sólido definido por:

$$W = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in \mathcal{R}, \ 0 \le z \le f(x, y) \right\}$$

W é fechado, limitado superiormente pelo gráfico de f, (z = f(x,y)), inferiormente pelo retângulo  $\mathcal{R}$  e lateralmente pelos planos x = a, x = b, y = c e y = d.

Se vol(W) denota o volume de W, então

$$vol(W) = \int_{\mathcal{R}} f dA = \int_{\mathcal{R}} f(x, y) dx dy$$

De fato, escolhendo  $c_{ij}$  como o ponto de  $\mathcal{R}_{ij}$  onde f atinge seu valor máximo sobre  $\mathcal{R}_{ij}$  (este ponto existe já que  $\mathcal{R}_{ij}$  é compacto e f é contínua), então  $f(c_{ij})\Delta x\Delta y$  é o volume do paralelepípedo de base  $\mathcal{R}_{ij}$  e altura  $f(c_{ij})$ .

$$S_n = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} f(c_{ij}) \Delta x \Delta y$$
 é o volume de um solido circunscrito a  $W$ .

Analogamente, se  $\overline{c}_{ij} \in \mathcal{R}_{ij}$  é o ponto onde f atinge seu mínimo em  $\mathcal{R}_{ij}$ , então  $f(\overline{c}_{ij})\Delta x \Delta y$  é o volume do paralelepípedo de base  $\mathcal{R}_{ij}$  e altura  $f(\overline{c}_{ij})$ .

$$s_n = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} f(\overline{c}_{ij}) \Delta x \Delta y$$
 é o volume de um solido inscrito em  $W$ .

É claro que  $s_n \le vol(W) \le S_n$ . Além disso, como f é integrável sobre  $\mathcal{R}$ , os limites das somas de Riemann  $s_n$  e  $S_n$  independem das escolhas de  $c_{ij}$  e temos

$$\int_{\mathcal{R}} f dA = \lim_{n \to \infty} s_n \le vol(W) \le \lim_{n \to \infty} s_n = \int_{\mathcal{R}} f dA.$$

Assim.

$$vol(W) = \int_{\mathcal{R}} f \, dA.$$

**Exemplo 1.4** Vimos no exemplo 1.3 que  $\int_{\mathcal{R}} x^2 y = \frac{1}{6}$ , onde  $\mathcal{R} = [0,1] \times [0,1]$ . Se W é o solido limitado superiormente pelo gráfico de  $f(x,y) = x^2 y$ , inferiormente pelo quadrado  $\mathcal{R} = [0,1] \times [0,1]$  e lateralmente pelos planos x = 0, x = 1, y = 0 e y = 1, então  $vol(W) = \frac{1}{6}$  unidades de volume. (Observe que  $f(x,y) = x^2 y \ge 0 \ \forall (x,y) \in \mathcal{R}$ ).

# 1.4 Propriedades da Integral Dupla

Sejam  $f, g : \mathcal{R} \to \mathbb{R}$  funções definidas sobre um retângulo  $\mathcal{R}$  e sejam  $\alpha, \beta \in \mathbb{R}$ . As seguintes propriedades são válidas

(1) Linearidade: Se as funções f e g são integráveis sobre  $\mathcal{R}$ , então a função  $\alpha f + \beta g$  é integrável sobre  $\mathcal{R}$  e

$$\int_{\mathcal{R}} (\alpha f + \beta g) dA = \alpha \int_{\mathcal{R}} f dA + \beta \int_{\mathcal{R}} g dA.$$

(2) Se f e g são integráveis sobre  $\mathcal{R}$  e  $\forall (x,y) \in \mathcal{R}$ ,  $f(x,y) \leq g(x,y)$ , então

$$\int_{\mathcal{R}} f dA \le \int_{\mathcal{R}} g dA.$$

(3) Se  $\mathcal{R}$  é dividido em k subretângulos  $\mathcal{R}_1$ ,  $\mathcal{R}_2$ ,..., $\mathcal{R}_k$  tais que  $R_i \cap R_j \subset \partial R_i \cap \partial R_j$  e f é integrável sobre cada  $\mathcal{R}_i$ , j = 1, 2, ..., k; então f é integrável sobre  $\mathcal{R}$  e

$$\int_{\mathcal{R}} f dA = \sum_{j=1}^{k} \int_{\mathcal{R}_j} f dA.$$

Definição 1.5 (Integrais Iteradas) Para uma função  $f: \mathcal{R} \to \mathbb{R}$  contínua e limitada definida num retângulo  $\mathcal{R} = [a,b] \times [c,d]$ , uma integral iterada de f sobre  $\mathcal{R}$  é uma integral do tipo

$$\int_{c}^{d} \left\{ \int_{a}^{b} f(x, y) dx \right\} dy \qquad \text{ou} \qquad \int_{a}^{b} \left\{ \int_{c}^{d} f(x, y) dy \right\} dx.$$

Para calcular, por exemplo, a integral  $\int_c^d \left\{ \int_a^b f(x,y) dx \right\} dy$ , calculamos a integral  $\int_a^b f(x,y) dx$  como a integral de uma função da variável x, com y fixo. O resultado será uma função na variável y que agora integramos nessa varável nos limites de integração c e d.

Analogamente calculamos  $\int_a^b \left\{ \int_c^d f(x,y) dy \right\} dx$ .

Exemplo 1.6 Calcular  $\int_0^1 \left\{ \int_{-1}^2 x^3 y^2 dy \right\} dx.$ 

Solução:

$$\int_{-1}^{2} x^{3} y^{2} dy = \frac{1}{3} x^{3} y^{3} \Big|_{-1}^{2} = \frac{x^{3}}{3} \Big( 2^{3} - (-1)^{3} \Big) = \frac{x^{3}}{3} 9 = 3x^{3}.$$

$$\int_{0}^{1} \left\{ \int_{-1}^{2} x^{3} y^{2} dy \right\} dx = \int_{0}^{1} 3x^{3} dx = \frac{3}{4} x^{4} \Big|_{0}^{1} = \frac{3}{4}.$$

Exemplo 1.7 Calcular  $\int_0^1 \left\{ \int_1^2 y e^{xy} dx \right\} dy$  Solução:

$$\int_{1}^{2} y e^{xy} dx = e^{xy} \Big|_{x=1}^{x=2} = e^{2y} - e^{y}.$$

$$\int_0^1 \left\{ \int_1^2 y e^{xy} dx \right\} dy = \int_0^1 \left( e^{2y} - e^y \right) dy = \left( \frac{1}{2} e^{2y} - e^y \right) \Big|_0^1 = \frac{1}{2} e^2 - e - \left( \frac{1}{2} - 1 \right) = \frac{1}{2} e^2 - e + \frac{1}{2}.$$

O teorema a seguir relaciona as integrais duplas com as integrais iteradas.

Teorema 1.8 (Teorema de Fubini<sup>a</sup>) Seja  $f: \mathcal{R} \to \mathbb{R}$  uma função contínua no retângulo  $\mathcal{R} = [a,b][c,d]$ . Então,

$$\int_{\mathcal{R}} f dA = \int_{c}^{d} \left\{ \int_{a}^{b} f(x, y) dx \right\} dy = \int_{a}^{b} \left\{ \int_{c}^{d} f(x, y) dy \right\} dx.$$

 $^a$ Guido Fubini, matemático italiano (19/01/1879 - 06/06/1943). Doutorou-se em 1900 com uma tese sobre paralelismo de Clifford em espaços elípticos.

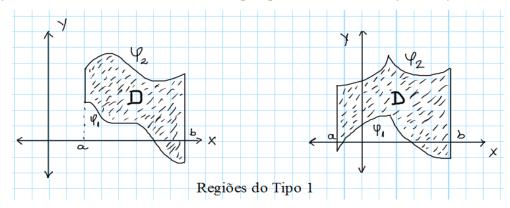
### 1.5 Integração Dupla em Regiões mais Gerais

Consideraremos dois tipos especiais de subconjuntos do plano que utilizaremos para estender o conceito de integral dupla sobre retângulos a regiões mais gerais.

**Tipo 1:** Dizemos que uma região  $D \subset \mathbb{R}^2$  é do tipo 1 se, e somente se, D pode ser descrita como:

$$D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b; \ \varphi_1(x) \le y \le \varphi_2(x)\}$$

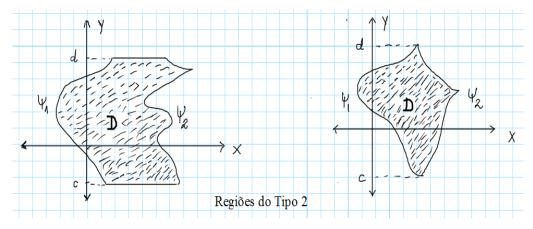
onde  $\varphi_i$ , i = 1, 2 são funções contínuas tais que, para todo  $x \in [a, b]$ ,  $\varphi_1(x) \le \varphi_2(x)$ 



**Tipo 2:** *D* é uma região do tipo 2 se, e somente se, ela pode ser descrita como:

$$D = \{(x, y) \in \mathbb{R}^2 : \psi_1(y) \le x \le \psi_2(y); \ c \le y \le d\}$$

onde  $\psi_1, \psi_2 : \mathcal{R} \to \mathbb{R}$  são funções contínuas e, para todo  $y \in [c, d], \psi_1(y) \le \psi_2(y)$ .



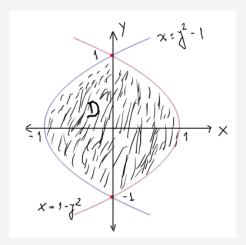
### Definição 1.9 Regiões dos tipos 1 ou 2 são chamadas de regiões elementares.

Note que regiões elementares são fechadas e limitadas.



**Exemplo 1.10** Seja D a região do plano limitada pelas curvas  $y^2 - x = 1$  e  $y^2 + x = 1$ . Podemos descrever D como:

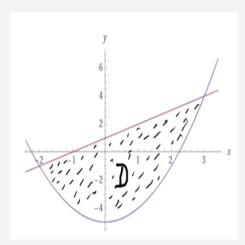
$$D = \{(x, y) \in \mathbb{R}^2 : -1 \le y \le 1; \ y^2 - 1 \le x \le y^2 + 1\}$$



D é uma região do tipo 2.

**Exemplo 1.11** A região D limitada pelas curvas y = x+1 e  $y = x^2-5$  pode ser descrita como:

$$D = \{(x, y) \in \mathbb{R}^2 : -2 \le x \le 3; \ x^2 - 5 \le y \le x + 1\}$$



D é uma região do tipo 1.

Agora vamos estender a definição de integral dupla a regiões elementares.

Sejam D uma região elementar,  $\mathcal R$  um retângulo que contém D  $(D\subset \mathcal R)$  e  $f:D\to \mathbb R$  uma função contínua e limitada.

Defina:

$$\widetilde{f}: \mathcal{R} \to \mathbb{R}, \quad \widetilde{f}(x,y) = \begin{cases} f(x,y) & \text{se } (x,y) \in D \\ 0 & \text{se } (x,y) \in \mathcal{R} \setminus D \end{cases}$$

 $\widetilde{f}$  é limitada e contínua, salvo talvez, nos pontos de  $\partial D$ .



Se  $\partial D$  é uma união finita de curvas, que podemos pensar como gráfico de funções contínuas, então  $\widetilde{f}$  é uma função integrável sobre  $\mathcal{R}$ .

**Definição 1.12** Seja D uma região elementar, dizemos que a função  $f:D\to\mathbb{R}$  é integrável sobre D se a função  $\widetilde{f}$  é integrável sobre  $\mathcal{R}$ . Neste caso definimos:

$$\int_{D} f \, da = \int_{\mathcal{R}} \widetilde{f} \, dA.$$



Note que  $\int_D f dA$  não depende da escolha do retângulo  $\mathcal R$  que usamos na sua definição pois, se  $\mathcal R_1$  é outro retângulo que contém D e

$$\widetilde{f_1}:\mathcal{R}\to\mathbb{R},\quad \widetilde{f_1}(x,y)=\left\{\begin{array}{ccc} f(x,y) & se & (x,y)\in D\\ 0 & se & (x,y)\in\mathcal{R}_1\setminus D \end{array}\right.$$

é definida como antes, então  $\int_{\mathcal{R}} \widetilde{f} dA = \int_{\mathcal{R}_1} \widetilde{f_1} dA$ , já que  $\widetilde{f} = \widetilde{f_1}$  onde  $\mathcal{R}$  e  $\mathcal{R}_1$  diferem.

Teorema 1.13 Sejam D uma região elementar e  $f:D\to\mathbb{R}$  uma função integrável sobre D, então

(a) Se  $D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b; \varphi_1(x) \le y \le \varphi_2(x)\}$  é uma região do tipo 1.

$$\int_{D} f dA = \int_{a}^{b} \left\{ \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy \right\} dx.$$

(b) Se  $D = \{(x, y) \in \mathbb{R}^2 : \psi_1(y) \le x \le \psi_2(y); c \le yd\}$  é uma região do tipo 2.

$$\int_D f dA = \int_c^d \left\{ \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \right\} dy.$$

Corolário 1.14 Se  $f \equiv 1$ , ou seja, se f(x,y) = 1, para todos  $(x,y) \in D$ , então

$$\int_{D} f dA = \int_{D} dx dy = \text{área}(D)$$

**Demonstração:** Suponhamos, por exemplo, que *D* é do tipo 1, ou seja,

 $D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b; \ \varphi_1(x) \le y \le \varphi_2(x)\},$  então

$$\int_{D} f dA = \int_{a}^{b} \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} dy dx = \int_{a}^{b} (\varphi_{2}(x) - \varphi_{1}(x)) dx = \text{área}(D.)$$

Corolário 1.15 Se,  $\forall (x,y) \in D$ ,  $f(x,y) \geq 0$ , então  $\int_D f dA = \operatorname{vol}(W)$ , onde  $W = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in D; \ 0 \leq z \leq f(x,y)\}$  é o cilindro sobre a região D limitado por cima pelo gráfico de f.

**Exemplo 1.16** Calcular  $\int_D \sqrt{1-y^2} dx dy$ , onde D é a região limitada por  $x^2+y^2=1$ , no primeiro quadrante.

**Solução:** Vamos considerar D do tipo 2.  $D = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 1, \ 0 \le x \le \sqrt{1-y^2}\}$ 

$$\int_{D} \sqrt{1 - y^2} dx dy = \int_{0}^{1} \int_{0}^{\sqrt{1 - y^2}} \sqrt{1 - y^2} dx dy = \int_{0}^{1} (1 - y^2) dy = \frac{2}{3}.$$

**Exemplo 1.17** Determine o volume do solido W limitado por: z = 2x + 1,  $x = y^2$  e x - y = 2.

**Solução:**  $vol(W) = \int_D (2x+1)dA$ , onde  $D: \begin{cases} -1 \le y \le 2 \\ y^2 \le x \le y+2 \end{cases}$  Assim,  $vol(W) = \int_{-1}^2 \int_{y^2}^{y+2} (2x+1)dxdy = \int_{-1}^2 (x^2+x) \Big|_{y^2}^{y+2} dy = \int_{-1}^2 (5y+6-y^4)dy = \frac{189}{10}$ .  $\therefore vol(W) = \frac{189}{10}$  unidades de volume.

Exemplo 1.18 Calcule a área da região D, limitada pelas curvas  $y=4x-x^2$  e y=x. Solução:  $D: \left\{ \begin{array}{c} 0 \leq x \leq 3 \\ x \leq y \leq 4x-x+2 \end{array} \right.$ 

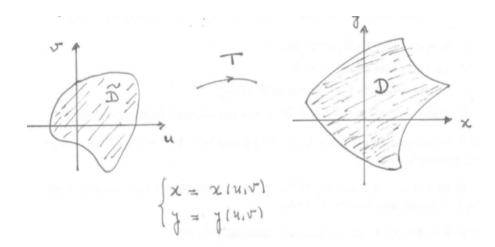
$$\operatorname{área}(d) = \int_D dA = \int_0^3 \int_x^{4x - x^2} dy dx = \int_0^3 (3x - x^2) dx = \left(\frac{3x^2}{2} - \frac{x^3}{3}\right) \Big|_0^3 = \frac{27}{2} - \frac{27}{3} = \frac{9}{2}.$$

 $\therefore$  área $(D) = \frac{9}{2}$  unidades de área.

# 1.6 Mudança de Coordenadas

**Definição 1.19** Seja  $\widetilde{D} \subset \mathbb{R}^2$  uma região elementar, uma transformação do plano é uma aplicação  $T:\widetilde{D} \to \mathbb{R}^2$ , T(u,v)=(x(u,v),y(u,v)) onde  $x,y:\mathcal{R} \to \mathbb{R}$  são funções contínuas, com derivadas parciais contínuas no retângulo aberto  $\mathcal{R}$  tal que  $\widetilde{D} \subset \mathcal{R}$ .

**Notação:** Denotemos por D a imagem da transformação T. i.e.  $D = T(\widetilde{D})$ .



Exemplo 1.20 Seja 
$$T:[0,1]\times[0,2\pi]\to\mathbb{R}^2$$
,  $T(r,\theta)=(x(r,\theta),y(r,\theta))$ .

Onde 
$$\begin{cases} x = x(r,\theta) = r\cos(\theta) \\ y = y(r,\theta) = r\sin(\theta) \end{cases}$$

Onde  $\begin{cases} x = x(r,\theta) = r\cos(\theta) \\ y = y(r,\theta) = r\sin(\theta) \end{cases}$  A imagem de  $\widetilde{D} = [0,1] \times [0,2\pi]$  por T é o círculo  $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ . Assim T transforma o retangulo  $[0,1] \times [0,2\pi]$  no círculo  $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ .



**Definição 1.21** Dizemos que uma transformação  $T: \widetilde{D} \to \mathbb{R}^2$  é injetiva em  $\widetilde{D}$  se:

$$T(u_1, v_1) = T(u_2, v_2) \implies (u_1, v_1) = (u_2, v_2), \quad \forall (u_1, v_1), (u_2, v_2) \in \widetilde{D}$$

Equivalentemente, *T* é injetiva se:

$$(u_1, v_1) \neq (u_2, v_2) \implies T(u_1, v_1) \neq T(u_2, v_2), \quad \forall (u_1, v_1), (u_2, v_2) \in \widetilde{D}$$

Exemplo 1.22 A transformação *T* do exemplo 1.20 não é injetiva. De fato,

$$T(1,0) = T(1,2\pi) = (1,0)$$
 mas  $(1,0) \neq (1,2\pi)$ .

A mesma transformação anterior, agora restrita ao retângulo  $(0,1] \times [0\pi]$  é injetiva. Ou seja,

$$T:(0,1]\times[0\pi]\to\mathbb{R}^2$$
,  $T(r,\theta)=(r\cos(\theta),r\sin(\theta))$ 

é injetiva.

**Definição 1.23** Seja  $\widetilde{D} \to \mathbb{R}^2$ , T(u,v) = (x(u,v),y(u,v)) uma transformação do plano, com x,y funções de classe  $C^1$  em um aberto que contém  $\widetilde{D}$ . A matriz

$$J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \\ \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

é chamada matriz Jacobiana da Transformação T.

Notação:

$$\frac{\partial(x,y)}{\partial(u,v)} = det(J) = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}.$$

**Exemplo 1.24** Considere a transformação *T* do exemplo 1.20

$$T(r,\theta) = (r\cos(\theta), r\sin(\theta)).$$

A matriz Jacobiana é

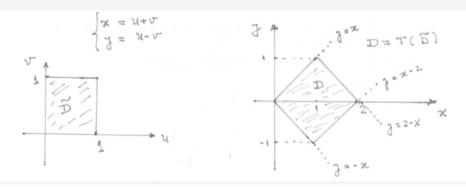
$$J = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix} \qquad e \qquad det(J) = \frac{(x,y)}{(r,\theta)} = r\cos^2(\theta) + r\sin^2(\theta) = r.$$

Uma das importâncias da matriz Jacobiana está no teorema aseguir cuja demonstração, por enquanto, não faremos.

Teorema 1.25 Seja  $T:\widetilde{D}\to\mathbb{R}^2$ , T(u,v)=(x(u,v),y(u,v)) uma transformação do plano. Se o Jacobiano de T num ponto  $(u_0,v_0)\in\widetilde{D}$ ,  $\frac{\partial(x,y)}{\partial(u,v)}(u_0,v_0)$ , é diferente de zero, então existe uma vizinhança  $V\subset\widetilde{D}$  do ponto  $(u_0,v_0)$  tal que a restrição de T à vizinhança V é injetiva.

$$\left( \frac{(x,y)}{(u,v)}(u_0,v_0) \neq 0 \quad \Longrightarrow \quad \exists \, V \subset \widetilde{D}, \, (u_0,v_0) \in V, \ \, \text{t.q.} \ \, T:V \to \mathbb{R}^2 \quad \text{\'e injetiva} \, \right).$$

Exemplo 1.26 Seja  $T:[0,1]\times[0,1]\to\mathbb{R}^2$ , T(u,v)=(u+v,u-v).

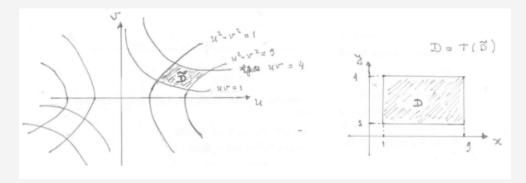


Note que:

$$u = 0$$
  $\Longrightarrow$   $y = -x$  e  $u = 1$   $\Longrightarrow$   $y = 2 - x$ ;  
 $v = 0$   $\Longrightarrow$   $y = x$  e  $v = 1$   $\Longrightarrow$   $y = x - 2$ .  

$$\frac{\partial(x, y)}{\partial(u, v)} = det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2 \neq 0.$$

**Exemplo 1.27** Considere a transformação T definida por  $\begin{cases} x = u^2 - v^2 \\ y = uv \end{cases}$  na região  $\widetilde{D}$  limitada pelas curvas  $u^2 - v^2 = 1$ ,  $u^2 - v^2 = 9$ , uv = 1, e uv = 4, no primeiro quadrante.



$$u^2 - v^2 = 1 \implies x = 1 \text{ e } u^2 - v^2 = 9 \implies x = 9;$$
  
 $uv = 1 \implies y = 1 \text{ e } uv = 4 \implies y = 4.$   
 $\frac{\partial(x,y)}{\partial(u,v)} = det \begin{pmatrix} 2u & -2v \\ v & u \end{pmatrix} = 2(u^2 + v^2) \neq 0, \text{ em } \widetilde{D}.$ 

Teorema 1.28 (Mudança de Coordenadas em Integrais Duplas) Seja  $T:\widetilde{D}\to\mathbb{R}^2$  uma transformação injetiva de classe  $C^1$ . Seja  $D=T(\widetilde{D})$  e suponha que D e  $\widetilde{D}$  são regiões elementares do plano  $\mathbb{R}^2$ . Então para toda função integrável  $f:D\to\mathbb{R}$  temos:

$$\int_D f(x,y) dx dy = \int_{\widetilde{D}} f(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

onde  $\left| \frac{\partial(x,y)}{\partial(u,v)} \right|$  é o valor absoluto do determinante jacobiano e f(u,v) = f(x(u,v),y(u,v)).

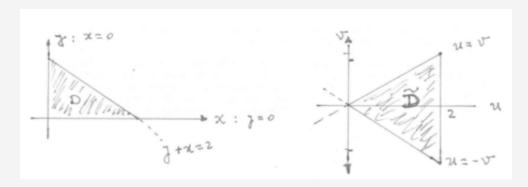


Em particular temos que:

$$\hat{a}rea(D) = \int_{D} dx dy = \int_{\widetilde{D}} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$

Exemplo 1.29 Calcular  $\int_D e^{\frac{y-x}{x+y}} dx dy$ , onde D é a região limitada pela reta y+x=2 e pelos eixos coordenados.

**Solução:** Considere a mudança de coordenadas  $\begin{cases} u = x + y \\ v = y - x \end{cases}$ 



$$x = 0 \implies u = v, \quad y = 0 \implies u = -v, \quad x + y = 2 \implies u = 2.$$

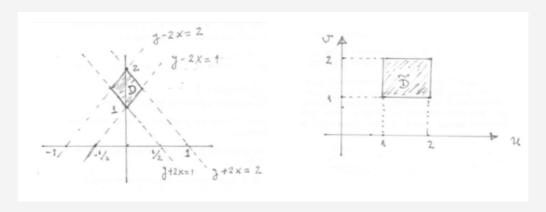
$$\frac{\partial(u, v)}{\partial(x, y)} = det \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = 2. \qquad \therefore \left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \frac{1}{2}.$$

$$\int_{D} e^{\frac{y-x}{x+y}} dx dy = \frac{1}{2} \int_{\widetilde{D}} e^{\frac{v}{u}} du dv = \frac{1}{2} \int_{0}^{1} \int_{-u}^{u} e^{\frac{v}{u}} dv du = \frac{1}{2} \int_{0}^{2} u e^{\frac{v}{u}} \Big|_{v=-u}^{v=u} du = \frac{e-e^{-1}}{2} \int_{0}^{2} u du$$

$$\text{Logo,} \qquad \int_{D} e^{\frac{y-x}{x+y}} dx dy = e-e^{-1}.$$

Exemplo 1.30 Calcular  $\int_D \frac{y+2x}{y-2x} dA$ , onde D é a região limitada pelas retas y-2x=2, y+2x=2, y-2x=1 e y+2x=1.

Solução: façamos  $\begin{cases} u=y+2x\\ v=y-2x \end{cases}$ 

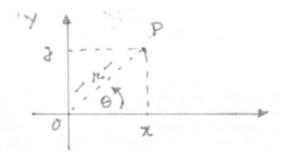


$$y-2x=2 \implies v=2$$
,  $y+2x=2 \implies u=2$ ,  $y-2x=1 \implies v=1$ , e  $y+2x=1 \implies u=2$ ,

$$\int_{D} \frac{y + 2x}{y - 2x} dA = \int_{\widetilde{D}} \frac{u}{v^{2}} \frac{1}{4} du dv = \frac{1}{4} \int_{1}^{2} \int_{1}^{2} \frac{u}{v^{2}} du dv = \dots = \frac{3}{16}.$$

#### 1.7 Coordenadas Polares

As coordenadas polares de um ponto P com coordenadas retangulares (x,y) são  $(r,\theta)$  onde r = d(P,O) é a distância do ponto P à origem O e  $\theta$  é o ângulo entre o eixo X e o segmento de reta que liga os pontos O e P.



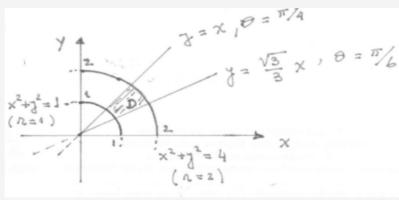
A relação entre as coordenadas (x,y) e as coordenadas  $(r,\theta)$  é dada por:  $\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$ 

Note que esta mudança é injetiva em  $\widetilde{D} = \{(r, atheta) : r > 0, \ \theta_0 < \theta < \theta_0 + 2\pi\} \ \text{com} \ \theta_0 \text{ constante.}$ 

Além disso, esta mudança transforma a região circular  $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = a^2\}$  na região retangular  $\widetilde{D} = \{(r,\theta) : 0 \le r \le a, \ 0 \le \theta \le 2\pi\}$ .

A matriz Jacobiana desta transformação é:  $J = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$  e  $\det(J) = r$ .

**Exemplo 1.31** Calcular  $\int_D (x^2+y^2)dA$ , onde D é a região limitada pelas curvas  $x^2+y^2=1$ ,  $x^2+y^2=4$ , y=x e  $y=\frac{\sqrt{3}}{3}x$ , no primeiro quadrante. **Solução:** 



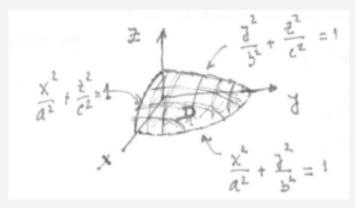
$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases} \widetilde{D} = \left\{ (r,\theta) : 1 \le r \le 2, \frac{\pi}{6} \le \theta \le \frac{\pi}{4} \right\}$$
$$\int_{D} \left( x^{2} + y^{2} \right) dA = \int_{\widetilde{D}} r^{2} \cdot r dr d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{1}^{2} r^{3} dr d\theta = \dots = \frac{5\pi}{16}.$$

**Exemplo 1.32** Calcular o volume do solido *W* limitado pelo elipsóide  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ , com a > 0, b > 0, c > 0.

**Solução:** Pela simetria do elipsóide podemos calcular a volume no primeiro octante, assim:

$$Vol(W) = 8 \int_{D} c \sqrt{1 - \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)} dx dy$$

onde D é a região, no primeiro quadrante do plano XY, limitada pela elipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ .



Façamos a mudança de coordenadas  $\begin{cases} x = ar\cos(\theta) \\ y = br\sin(\theta) \end{cases}$ 

O jacobiano desta mudança é

$$\frac{\partial(x,y)}{\partial(r,\theta)} = det \begin{pmatrix} a\cos(\theta) & -ar\sin(\theta) \\ b\sin(\theta) & br\cos(\theta) \end{pmatrix} = abr.$$

Logo,

$$vol(W) = 8 \int_{D} c \sqrt{1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)} dx dy = 8abc \int_{\widetilde{D}} r \sqrt{1 - r^{2}} dr d\theta = 8abc \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} r \sqrt{1 - r^{2}} dr d\theta$$

$$vol(W) = \cdots = \frac{4}{3}abc\pi.$$

Note que 
$$\begin{cases} x = ar\cos(\theta) \\ y = br\sin(\theta) \end{cases} \implies \frac{x^2}{a^2} + \frac{y^2}{b^2} = r^2$$
. Logo,  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \implies r = 1$ .

Daí, 
$$\widetilde{D}: \begin{cases} 0 \le r \le 1 \\ 0 \le \theta \le \frac{\pi}{2} \end{cases}$$

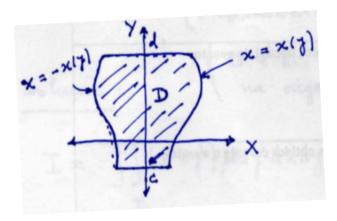
# 1.8 Simetria em Integrais Duplas

Dos cursos anteriores de Cálculo sabemos que se f = f(x) é uma função impar, então

$$\int_{-a}^{a} f(x)dx = 0.$$

No caso de integrais duplas temos.

Seja  $D \subset \mathbb{R}^2$  um domínio simétrico em relação, por exemplo, ao eixo Y.



D é limitado à direita pela curva x=x(y) e à esquerda pela curva x=-x(y). Seja f=f(x,y) uma função contínua impar na variável x (i.e. f(-x,y)=-f(x,y)). Então

$$\int_D f(x,y)dxdy = 0.$$

De fato, neste caso,

$$\int_D f(x,y)dxdy = \int_c^d \left\{ \int_{-x(y)}^{x(y)} f(x,y)dx \right\} dy = \int_c^d 0dy = 0$$

Analogamente, se o domínio D é simétrico em relação ao eixo X e f é impar na variável y (i.e. f(x,-y)=-f(x,y)), então  $\int_D f(x,y)dxdy=0$ .

**Exemplo 1.33** Calcular  $I = \int_D \left[ \left( x^2 + y^2 \right) \sin(y) + x^3 y^2 \right] dx dy$  onde D é o círculo de raio r e centro na origem.

Solução:

$$I = \int_{D} (x^2 + y^2) \sin(y) dx dy + \int_{D} x^3 y^2 dx dy$$

Note que:

(1)  $\hat{f}(x,y) = (x^2 + y^2)\sin(y)$  é impar na variável  $y \in D$  é simétrico com relação ao eixo X. Logo,

$$\int_{D} (x^2 + y^2) \sin(y) dx dy = 0.$$

(2)  $g(x,y) = x^3y^2$  é impar na variável x e D é simétrico com relação ao eixo Y, logo

$$\int_D x^3 y^2 dx dy = 0.$$

Assim, I = 0.

### 1.9 Aplicações da Integral Dupla

#### Massa Total

Considere uma lâmina fina com a forma de uma região elementar  $D \subset \mathbb{R}^2$  e suponha que a massa sobre D se distribui com densidade dada por uma função  $f:D \to \mathbb{R}$ , positiva e integrável sobre D. f representa a massa por unidade de área em cada ponto  $(x,y) \in D$ .

A massa total de *D* é dada por

$$M(D) = \int_{D} f(x, y) dx dy$$

Em particular, se a lâmina é feita de material homogêneo (a densidade é constante), a massa total é o produto da densidade pela área de *D*.

#### Momento de Massa

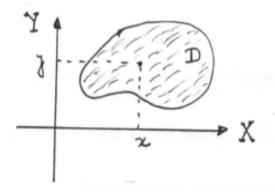
O momento de massa da lâmina D em relação a uma reta l é dao por

$$M_l = \int_D d(x, y) \cdot f(x, y) dx dy$$

onde d(x, y) é a distância do ponto  $(x, y) \in D$  à reta l.

Em particular os momentos de massa da lâmina D en relação aos eixos coordenados X e Y são dados, respectivamente, por

$$M_x = \int_D y f(x, y) dx dy$$
 e  $M_y = \int_D x f(x, y) dx dy$ 



#### Centro de Massa

O centro de massa da lâmina D é dado por  $(\overline{x}, \overline{y})$  onde,

$$\overline{x} = \frac{M_y}{M(D)}$$
 e  $\overline{y} = \frac{M_x}{M(D)}$ 

Se  $f(x,y) \equiv k > 0$ ,  $(\overline{x},\overline{y})$  é chamado de *centróide* de D e correspnde ao centro geométrico da região D.

O centro de massa pode ser pensado como um ponto onde a massa da lâmina se concentra sem alterar seu momento em relção a qualquer eixo.

Se f(x,y) não é constante, então o centro de massa de D pode não coincidir com o centróide de D.

#### Momento de Inércia

O momento de inércia da lâmina D em relação a uma reta l é

$$I_l = \int_D d^2(x, y) \cdot f(x, y) dx dy$$

onde  $d^2(x, y)$  é o quadrado da distância do ponto (x, y) à reta l.

Em particular, se l é o eixo X, então

$$I_X = \int_D y^2 \cdot f(x, y) dx dy$$

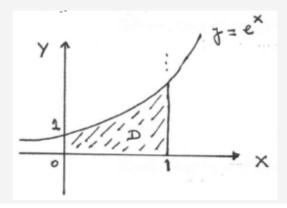
E se l é o sixo Y, então

$$I_Y = \int_D x^2 \cdot f(x, y) dx dy$$

Define-se ainda, o momento de inércia polar em relão à origem como:

$$I_0 = I_X + I_Y = \int_D (x^2 + y^2) \cdot f(x, y) dx dy$$

**Exemplo 1.34** Determinar o momento de inércia polar da região limitada pelas curvas  $y=e^x$ , x=1, y=0 e x=0; se a densidade é dada por f(x,y)=xy **Solução:** 



$$I_{X} = \int_{D} y^{2} \cdot xy dx dy = \int_{0}^{1} \int_{0}^{e^{x}} xy^{3} dy dx$$

$$= \int_{0}^{1} \frac{1}{4} xy^{4} \Big|_{y=0}^{y=e^{x}} dx = \int_{0}^{1} \frac{1}{4} xe^{4x} dx$$

$$= \frac{1}{16} xe^{4x} \Big|_{0}^{1} - \int_{0}^{1} \frac{1}{16} e^{4x} dx \qquad \Big|_{dv = e^{4x}} u = \frac{1}{4} dx$$

$$= \dots = \frac{3}{64} e^{4} - \frac{1}{64}.$$

$$I_{Y} = \int_{D} x^{2} \cdot xy dx dy = \int_{0}^{1} \int_{0}^{e^{x}} x^{3} y dy dx$$

$$= \int_{0}^{1} \frac{1}{2} x^{3} y^{2} \Big|_{y=0}^{y=e^{x}} dx = \int_{0}^{1} \frac{1}{2} x^{3} e^{2x}$$

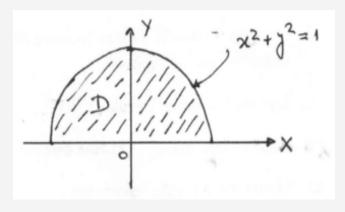
$$= \dots = \frac{e^{2}}{16} + \frac{3}{16}.$$

$$I_{0} = I_{X} + I_{Y} = \frac{3}{64} e^{4} + \frac{e^{2}}{16} - \frac{1}{64} + \frac{3}{16}.$$

$$\therefore I_{0} = \frac{1}{64} \left( 3e^{4} + 4e^{2} + 11 \right).$$

Exemplo 1.35  $\begin{cases} x^2 + y^2 \le 1 \\ y \ge 0 \\ \text{ponto à origem.} \end{cases}$ Solução:

Determinar a massa de uma lâmina D que ocupa a região se sua densidade, em cada ponto, é proporcional à distância do



A densidade, no ponto (x, y), é  $f(x, y) = k\sqrt{x^2 + y^2}$ .

$$M(D) = \int_D k\sqrt{x^2 + y^2} dx dy$$

Passando para coordenadas polares  $\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$  temos:

$$M(D) = k \int_0^1 \int_0^{\pi} \sqrt{r^2} r d\theta dr$$
$$= k \int_0^1 \int_0^{\pi} r^2 d\theta dr = \pi k \int_0^1 r^2 dr$$
$$= \frac{1}{3} k \pi \text{ unidades de massa.}$$