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Abstract

In this paper, we consider the wave equation with both viscous Kelvin–Voigt and frictional damping as a model of viscoelasticity
in which we incorporate an internal control with a moving support. We prove the null controllability when the control region, driven
by the flow of an ODE, covers all the domain. The proof is based upon the interpretation of the system as, roughly, the coupling of
a heat equation with an ordinary differential equation (ODE). The presence of the ODE for which there is no propagation along the
space variable makes the controllability of the system impossible when the control is confined into a subset in space that does not
move. The null controllability of the system with a moving control is established in using the observability of the adjoint system
and some Carleman estimates for a coupled system of a parabolic equation and an ODE with the same singular weight, adapted to
the geometry of the moving support of the control. This extends to the multi-dimensional case the results by P. Martin et al. in the
one-dimensional case, employing 1-d Fourier analysis techniques.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on considère comme modèle de la viscoélasticité l’équation des ondes avec un amortissement de Kelvin–Voigt
et un amortissement frictionnel, dans laquelle on incorpore un contrôle interne à support mobile. On démontre la contrôlabilité
à zéro de l’équation lorsque le support du contrôle, qui est transporté par le flot d’une équation différentielle ordinaire (EDO),
parcourt tout le domaine. La démonstration utilise l’interprétation du système de la viscoélasticité comme un système couplant une
équation de la chaleur et une EDO. La présence de l’EDO, pour laquelle il n’y a pas de propagation suivant la variable d’espace,
rend la contrôlabilité du système impossible lorsque le contrôle est confiné à une région qui ne bouge pas. La contrôlabilité à zéro
du système avec un contrôle mobile est établie en utilisant l’observabilité du système adjoint et des inégalités de Carleman pour
l’équation de la chaleur et l’ODE avec le même poids singulier, qui est adapté au support mobile du contrôle. Ceci permet d’étendre
à une dimension quelconque les résultats de P. Martin et al. établis en dimension un à l’aide de techniques d’analyse de Fourier.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We are concerned with the controllability of the following model of viscoelasticity consisting of a wave equation
with both viscous Kelvin–Voigt and frictional damping:

ytt − �y − �yt + b(x)yt = 1ω(t)h, x ∈ Ω, t ∈ (0, T ), (1.1)

y = 0, x ∈ ∂Ω, t ∈ (0, T ), (1.2)

y(x,0) = y0(x), yt (x,0) = y1(x), x ∈ Ω. (1.3)

Here Ω is a smooth, bounded open set in RN , b ∈ L∞(Ω) is a given function determining the frictional damping and
h = h(x, t) denotes the control. To simplify the presentation and notation, and without loss of generality, the viscous
constant has been taken to be the unit one ν = 1. The same system could be considered with an arbitrary viscosity
constant ν > 0 leading to the more general system

ytt − �y − ν�yt + b(x)yt = 1ω(t)h, (1.4)

but the analysis would be the same.
The control h acting on the right hand side term as an external force is, for all 0 < t < T , localized in a subset of Ω .

This fact is modeled by the multiplicative factor 1ω(t) which stands for the characteristic function of the set ω(t) that,
for any 0 < t < T , constitutes the support of the control, localized in a moving subset ω(t) of Ω .

Typically we shall consider control sets ω(t) determined by the evolution of a given reference subset ω of Ω

through a smooth flow X(x, t,0).
We consider the problem of null controllability. In other words, given a final time T and initial data for the system

(y0, y1) in a suitable functional setting, we analyze the existence of a control h = h(x, t) such that the corresponding
solution satisfies the rest condition at the final time t = T :

y(x,T ) ≡ yt (x, T ) ≡ 0, in Ω.

One of the distinguished features of the system under consideration is that, for this null controllability condition
to be fulfilled, the control needs to move in time. Indeed, if ω(t) ≡ ω for all 0 < t < T , i.e. if the support of the
control does not move in time as it is often considered, the system under consideration is not controllable. This can be
easily seen at the level of the dual observability problem. In fact, the structure of the underlying PDE operator and, in
particular, the existence of time-like characteristic hyperplanes, makes impossible the propagation of information in
the space-like directions, thus making the observability inequality also impossible. This was already observed in the
work by P. Martin et al. in [21] in the 1-d setting. There, for the 1-d model, it was shown that this obstruction could
be removed by making the control move so that its support covers the whole domain where the equation evolves.

More precisely, in [21], the 1-d version of the problem above was considered in the torus, with periodic boundary
conditions, b ≡ 0 and ω(t) = {x − t;x ∈ ω}, i.e.

ytt − yxx − yxxt = 1ω(t)h(x, t), x ∈ T. (1.5)

Recall that this system with boundary control, i.e. h ≡ 0 and the boundary conditions

y(0, t) = 0, y(1, t) = g(t),

g = g(t) being the boundary control, fails to be spectrally controllable, because of the existence of a limit point in the
spectrum of the adjoint system [24]. In the moving frame x′ = x + t , (1.5) may be written as

ztt − 2zxt − ztxx + zxxx = a(x)h(x + t, t), (1.6)

where z(x, t) = y(x + t, t). In [21] the spectrum of the adjoint system to (1.6) was shown to be split into a hyperbolic
part and a parabolic one. As a consequence, Eq. (1.6) was proved to be null controllable in large time. A similar result
was proved in [27] for the Benjamin–Bona–Mahony equation

yt − ytxx + yx + yyx = a(x − ct)h(x, t), x ∈ T.
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Once again this system turns out to be globally controllable and exponentially stabilizable in H 1(T) for any c �= 0.
But, as noticed in [22], the linearized equation fails to be spectrally controllable with a control supported in a fixed
domain.

As mentioned above, in both cases, the lack of controllability of these systems with immobile controls is due to the
fact that the underlying PDE operators exhibit the presence of time-like characteristic lines thus making propagation in
the space-like directions impossible. By the contrary, when analyzing the problem in a moving frame, the characteristic
lines are oblique ones in (x, t), thus facilitating propagation properties.

The main goal of this paper is to extend the 1-d analysis in [21] to the multi-dimensional case. This cannot be
done with the techniques in [21] based on Fourier analysis. Our approach is rather inspired on the fact that system
(1.1)–(1.2) can be rewritten as a system coupling a parabolic equation with an ordinary differential equation (ODE).
The presence of this ODE, in the case of a fixed support of the control, independent of t , is responsible for the lack of
controllability of the system, due to the absence of propagation in the space-like direction. Letting the control move
introduces an effect similar to adding a transport term in the ODE but keeping the control immobile, thus changing
the structure of the system into a parabolic–transport coupled one. This new system turns out to be controllable under
the condition that all characteristics of the transport equation enter within the control set in the given control time,
a condition that is reminiscent of the so-called Geometric Control Condition in the context of the wave equation
(see [2]).

This concept of moving control was introduced for the first time by J.L. Lions in [18] for the wave equation. One
important motivation for this kind of control is that the exact controllability of the wave equation with a pointwise
control and Dirichlet boundary conditions fails if the point is a zero of some eigenfunction of the Dirichlet Laplacian,
while it holds when the point is moving under some (much more stable) conditions easy to check (see e.g. [4]).
The controllability of the wave equation (resp. of the heat equation) with a moving point control was investigated in
[18,15,5,4] (resp. in [16,6]).

The approach in [21] would suggest to do the following splitting of (1.1):

vt − �v = 1ω(t)h + (1 − b)(v − y), (1.7)

yt + y = v. (1.8)

However, the splitting can be performed in an alternative manner as follows:

yt − �y + (b − 1)y = z, (1.9)

zt + z = 1ω(t)h + (b − 1)y. (1.10)

It can easily be seen that y solves Eq. (1.1) if, and only if, it is the first component of the solution of system
(1.9)–(1.10).

Our analysis of the Carleman inequalities for these systems is analog to that in [1] for a system of thermoelasticity
coupling the heat and the wave equation. The key in [1] and in our own analysis is to use the same weight function
both for the Carleman inequality of the heat and the hyperbolic model. In [1], since dealing with the wave equation,
rather strong geometric conditions were needed on the subset where the control or the observation mechanism acts.
In our case, since we are considering the simpler transport equation, the geometric assumptions will be milder, con-
sisting mainly on a characteristic condition ensuring that all characteristic lines of the transport equation intersect
the control/observation set. This suffices for the Carleman inequality to hold for the transport equation and is also
sufficient for the heat equation that it is well known to be controllable/observable from any open nonempty subset of
the space–time cylinder where the equation is formulated.

It is important to mention that, as far as we know, all the Carleman inequalities for the heat equation available in
the literature are done for the case where the control region is fixed. In the case we are dealing, the control region is
moving in time. Therefore, a new Carleman inequality must be proved in this framework. The proof of a Carleman
inequality for the heat equation when the control region is moving is one of the novelties of this paper.

In order to state the main result of this paper we first describe precisely the class of moving trajectories for the
control for which our null controllability result will hold.

Admissible trajectories: In practice the trajectory of the control can be taken to be determined by the flow X(x, t, t0)

generated by some vector field f ∈ C([0, T ];W 2,∞(RN ;RN)), i.e. X solves



Author's personal copy

F.W. Chaves-Silva et al. / J. Math. Pures Appl. 101 (2014) 198–222 201

⎧⎨
⎩

∂X

∂t
(x, t, t0) = f

(
X(x, t, t0), t

)
,

X(x, t0, t0) = x.

(1.11)

For instance, any translation of the form:

X(x, t, t0) = x + γ (t) − γ (t0), (1.12)

where γ ∈ C1([0, T ];RN), is admissible. (Pick f (x, t) = γ̇ (t).)
We assume that there exist a bounded, smooth, open set ω0 ⊂ RN , a curve Γ ∈ C∞([0, T ];RN), and two times

t1, t2 with 0 � t1 < t2 � T such that:

Γ (t) ∈ X(ω0, t,0) ∩ Ω, ∀t ∈ [0, T ]; (1.13)

Ω ⊂
⋃

t∈[0,T ]
X(ω0, t,0) = {

X(x, t,0); x ∈ ω0, t ∈ [0, T ]}; (1.14)

Ω \ X(ω0, t,0) is nonempty and connected for t ∈ [0, t1] ∪ [t2, T ]; (1.15)

Ω \ X(ω0, t,0) has two (nonempty) connected components for t ∈ (t1, t2); (1.16)

∀γ ∈ C
([0, T ];Ω)

, ∃t ∈ [0, T ], γ (t) ∈ X(ω0, t,0). (1.17)

The main result in this paper is as follows:

Theorem 1.1. Let T > 0, X(x, t, t0) and ω0 be as in (1.13)–(1.17), and let ω be any open set in Ω such that ω0 ⊂ ω.
Then for all (y0, y1) ∈ L2(Ω)2 with y1 − �y0 ∈ L2(Ω), there exists a function h ∈ L2(0, T ;L2(Ω)) for which the
solution of

ytt − �y − �yt + b(x)yt = 1X(ω,t,0)(x)h, (x, t) ∈ Ω × (0, T ), (1.18)

y(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (1.19)

y(.,0) = y0, yt (.,0) = y1, (1.20)

fulfills y(., T ) = yt (., T ) = 0.

A few remarks are in order in what concerns the functional setting of this model:

• Viewing the system of viscoelasticity under consideration as a damped wave equation, a natural functional setting
would be the following: For data in H 1

0 (Ω)×L2(Ω) and, say, right hand side term of (1.1) in L2(0, T ;H−1(Ω)),
there exists a unique solution y ∈ C([0, T ];H 1

0 (Ω) ∩ C1([0, T ];L2(Ω)). Furthermore yt ∈ L2(0, T ;H 1
0 (Ω)).

The latter is an added integrability/regularity property of the solution that is due to the strong damping effect of
the system. This can be seen naturally by considering the energy of the system

E(t) = 1

2

∫
Ω

[|yt |2 + |∇y|2]dx,

that fulfills the energy dissipation law

d

dt
E(t) = −

∫
Ω

[|∇yt |2 + b(x)|yt |2
]
dx +

∫
ω(t)

hyt dx.

• We can also solve (1.9)–(1.10) so that y, solution of the heat equation, lies in the space y ∈ C([0, T ];H 1
0 (Ω)) ∩

L2(0, T ;H 2(Ω)) and z, solution of the ODE, in C([0, T ];L2(Ω)). This can be done provided (y0, y1 − �y0) ∈
H 1

0 (Ω) × L2(Ω). The functional setting is not exactly the same but this is due to the fact that, in some sense, in
one case we see the system as a perturbation of the wave equation, while, in the other one, as a variant of the heat
equation.
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• From a control theoretical point of view it is much more efficient to analyze the system in the second setting,
as a perturbation of the heat equation, through the coupling with the ODE or, after changing variables, with
a transport equation. If we view the system of viscoelasticity as a perturbation of the wave equation, standard
hyperbolic techniques such as multiplier, Carleman inequalities or microlocal tools do not apply since, actually,
the viscoelastic term determines the principal part of the underlying PDE operator and cannot be viewed as a
perturbation of the wave dynamics.

The analysis is particularly simple in the special case where b ≡ 1. Indeed, in that case, the system (1.7)–(1.8)
(with a second control incorporated in the ODE) takes the following cascade form

vt − �v = 1ω(t)h̃, (1.21)

yt + y = 1ω(t)k̃ + v, (1.22)

where the parabolic equation (1.21) is uncoupled. This system will be investigated in a separate section (Section 2)
since some of the basic ideas allowing to handle the general case emerge already in its analysis. Note that, in this par-
ticular case, roughly, one can first control the heat equation by a suitable control h̃ and then, once this is done, viewing
v as a given source term, control the transport equation by a convenient k̃. This case is also important because the only
assumption needed to prove Theorem 1.1 in this case is (1.14) (i.e. we don’t assume that (1.13) and (1.15)–(1.17) are
satisfied).

In this particular case b ≡ 1 a similar argument can be used with the second decomposition.
The paper is organized as follows. Section 2 is devoted to address the particular case b ≡ 1. In Section 3 we give

some examples showing the importance of the taken assumptions on the trajectories. In Section 4, we go back to the
general system (1.9)–(1.10). We prove that this system is null controllable in L2(Ω)2 (see Theorem 4.1) by deriving
the observability of the adjoint system from two Carleman estimates with the same singular weight, adapted to the
flow determining the moving control. The details of the construction of the weight function based on (1.13)–(1.17) are
given in Lemma 4.3. Theorem 1.1 is then a direct consequence of Theorem 4.1. We finish this paper with two further
sections devoted to comment some closely related issues and open problems.

2. Analysis of the decoupled cascade system

In this section, we give a proof of Theorem 1.1 in the special situation when b ≡ 1, and ω(t) = X(ω0, t,0), where
X is given by (1.11) for some f ∈ C(R+;W 2,∞(RN ;RN)).

As we said before, we will prove Theorem 1.1 in the case b ≡ 1 by proving a null controllability result for the
decomposition (1.21)–(1.22). The idea of the proof is as follows. We take some appropriate 0 < ε < T and then drive
the solution of the heat Eq. (1.21) to zero in time ε by means of a control h̃. Next, we let Eq. (1.22) evolve freely in
[0, ε], i.e., k̃ ≡ 0, and then we control this equation by means of a smooth control k̃ in the time interval [ε,T ]. This
gives the null controllability of the system (1.21)–(1.22) in the whole time interval [0, T ].

Proof of Theorem 1.1 in the case b ≡ 1. Suppose (1.14) is satisfied and let

T0 = inf

{
T > 0; Ω ⊂

⋃
0�t�T

X(ω0, t,0)

}
. (2.1)

Pick any T > T0, and pick some ε ∈ (0, T − T0) and some nonempty open set ω−1 ⊂ ω0 such that

Ω ⊂
⋃

ε�t�T

X(ω0, t,0), (2.2)

ω−1 ⊂ X(ω0, t,0) ∀t ∈ (0, ε). (2.3)

Let T ′ = T − ε, and pick any (v0, y0) ∈ L2(Ω)2. Then, it is well known (see [14]) that there exists some control input
h ∈ L2(0, ε;L2(Ω)) such that the solution v = v(x, t) of

vt − �v = 1ω−1h, x ∈ Ω, t ∈ (0, ε), (2.4)

v(x,0) = v0(x), x ∈ Ω, (2.5)
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satisfies

v(x, ε) = 0, x ∈ Ω.

Set

h̃(x, t) = 1ω−1(x)h(x, t), x ∈ Ω, t ∈ (0, ε),

h̃(x, t) = 0, x ∈ Ω, t ∈ (ε, T ),

k̃(x, t) = 0, x ∈ Ω, t ∈ (0, ε).

Then the solution v of

vt − �v = 1X(ω0,t,0)(x)h̃, x ∈ Ω, t ∈ (0, T ), (2.6)

v(x,0) = v0(x), x ∈ Ω, (2.7)

satisfies v(x, t) = 0 for t ∈ [ε,T ]. We claim that the system

yt + y = 1X(ω0,t,0)(x)k(x, t), x ∈ Ω, t ∈ (ε, T ), (2.8)

y(x, ε) = y0(x), (2.9)

is exactly controllable in L2(Ω) on the time interval (ε, T ). By duality, this is equivalent to proving that the
corresponding observability inequality

∫
Ω

∣∣q0(x)
∣∣2

dx � C

T∫
ε

∫
Ω

1X(ω0,t,0)(x)
∣∣q(x, t)

∣∣2
dx dt (2.10)

is fulfilled with a uniform constant C > 0 for all solution q of the adjoint system

−qt + q = 0, x ∈ Ω, t ∈ (ε, T ), (2.11)

q(x,T ) = q0(x). (2.12)

Since the solution of (2.11)–(2.12) is given by q(x, t) = et−T q0(x), we have that

T∫
ε

∫
Ω

1X(ω0,t,0)(x)
∣∣q(x, t)

∣∣2
dx dt � e2(ε−T )

∫
Ω

∣∣q0(x)
∣∣2

( T∫
ε

1X(ω0,t,0)(x) dt

)
dx. (2.13)

From (2.1) and the smoothness of X, we see that for all x ∈ Ω , there is some t0 ∈ (ε, T ), and some δ > 0 such that
for any y ∈ B(x, δ) and any t ∈ (ε, T ) ∩ (t0 − δ, t0 + δ) we have y ∈ X(ω0, t,0). From the compactness of Ω , we see
that there exists a number δ0 > 0 such that

T∫
ε

1X(ω0,t,0)(x) dt > δ0, ∀x ∈ Ω.

Combined with (2.13), this yields (2.10). Thus, (2.8)–(2.9) is exactly controllable in L2(Ω) on (ε, T ) with some con-
trols k ∈ C([ε,T ];L2(Ω)). Let y1(x) = e−εy0(x)+∫ ε

0 es−εv(x, s) ds. Extend k̃ to (0, T ) so that k̃ ∈ L2(0, T ;L2(Ω))

and the solution of

yt + y = 1X(ω0,t,0)(x)k̃, x ∈ Ω, t ∈ (ε, T ), (2.14)

y(x, ε) = y1(x), (2.15)

satisfies y(., T ) = 0. Thus the control (h̃, k̃) steers the solution of (1.21)–(1.22) from (v0, y0) at t = 0 to (0,0) at
t = T . Applying the operator ∂t − � in each side of (1.22) results in

ytt − �y − �yt + yt = 1X(ω0,t,0)(x)h̃ + (∂t − �)
[
1X(ω0,t,0)(x)k̃

]
. (2.16)
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Fig. 1. Example for which conditions (1.13)–(1.17) are satisfied.

This proves Theorem 1.1, except the fact that the control does not live in L2(0, T ;L2(Ω)). Assume now that
(v0, y0) ∈ L2(Ω) × [H 2(Ω) ∩ H 1

0 (Ω)]. To get a control k̃ ∈ L2(0, T ;H 2(Ω)), it is sufficient to replace 1ω(t) by
a(X(x,0, t)) in (1.22), where a is a function satisfying

a ∈ C∞
0 (ω),

a(x) = 1 ∀x ∈ ω0.

The proof is completed by showing the observability inequality

‖q0‖2
X′ � C

T∫
ε

∥∥(t − ε)a
(
X(.,0, t)

)
q(., t)

∥∥2
X′ dt

for the solution q of system (2.11)–(2.12), where X = H 2(Ω) ∩ H 1
0 (Ω) and X′ stands for its dual space. This can be

done as in [26, Proposition 2.1] (see also [10]). Next, using the HUM operator, we notice that k̃ ∈ C1([ε,T ];X) with
k̃(., ε) = 0, since q ∈ C1([ε,T ];X′) for any q0 ∈ X′. Thus, with this small change, the right hand side term in (2.16)
can be written 1X(ω,t,0)u(x, t), where u ∈ L2(0, T ;L2(Ω)). �
Remark 2.1. Observe that the situation when X(ω0, t,0) moves as in Fig. 2, Fig. 4 or in Fig. 5 (see below) is
admissible in the case when b ≡ 1.

3. Examples

In this section, we provide some geometric examples to illustrate the assumptions (1.13)–(1.17). We use simple
shapes (like rectangles) just for convenience.

• Fig. 1 shows how a control region should move in order to satisfy conditions (1.13)–(1.17).
• Fig. 2 depicts a situation for which Theorem 1.1 cannot be applied, except in the case when b ≡ 1, as condition

(1.16) fails.
• In Fig. 3, we modify the example given in Fig. 1 by shifting the time. Theorem 1.1 cannot be applied as it is,

since (1.15) fails. However, the conclusion of Theorem 1.1 remains valid. Indeed, assume that Ω \ ω(t) has two
connected components (resp. one) for t ∈ [0, τ1) ∪ (τ2, T ] (resp. for t ∈ [τ1, τ2]). Assume that the “jump” of ω(t)

occurs at t = τ3, with τ1 < τ3 < τ2. Let

O1 :=
⋃

0�t�τ3

ω(t), (3.1)

O2 :=
⋃

τ3�t�T

ω(t) (3.2)
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Fig. 2. Example for which condition (1.16) fails.

Fig. 3. Example for which condition (1.15) fails.

and let η ∈ C∞(Ω; [0,1]) be such that

supp(η) ⊂O1, (3.3)

supp(1 − η) ⊂O2, (3.4)

supp(∇η) ⊂ ω0. (3.5)

Then, applying the Carleman estimate in Lemma 4.6 to (p1, q1) = η(X(x,0, t))(p, q) in Ω ∩ {η > 0} on the time
interval [0, τ3], and to (p2, q2) = (1 − η(X(x,0, t)))(p, q) in Ω ∩ {η < 1} on the time interval [τ3, T ], we can
easily prove the observability inequality (4.11).

• Fig. 4 shows that the assumption (1.13), which is needed to construct the weight function ψ in Lemma 4.3 cannot
be replaced by the simpler condition

X(ω0, t,0) ∩ Ω �= ∅, ∀t ∈ [0, T ].

• Fig. 5 shows that the assumption (1.17), which is also needed to construct the weight function ψ in Lemma 4.3,
does not result from the other assumptions (1.13)–(1.16).

4. Null controllability of system (1.21)–(1.22)

In this section we pove Theorem 1.1. Using decomposition (1.9)–(1.10), it is easy to see that the null controllability
of (1.1)–(1.3) turns out to be equivalent to the null controllability of the system

yt − �y + (
b(x) − 1

)
y = z, (x, t) ∈ Ω × (0, T ), (4.1)

zt + z = 1X(ω,t,0)(x)h + (
b(x) − 1

)
y, (x, t) ∈ Ω × (0, T ), (4.2)

y(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (4.3)

z(x,0) = z0(x), x ∈ Ω, (4.4)

y(x,0) = y0(x), x ∈ Ω. (4.5)
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Fig. 4. Example showing that X(ω0, t,0) ∩ Ω �= ∅ ∀t ∈ [0, T ] does not imply (1.13).

Fig. 5. Example showing that (1.13)–(1.16) does not imply (1.17).

More precisely, Theorem 1.1 is a direct consequence of the following result.

Theorem 4.1. Let T , X(x, t, t0) and ω0 be as in (1.13)–(1.17), and let ω be as in Theorem 1.1. Then for all
(y0, z0) ∈ L2(Ω)2, there exists a control function h ∈ L2(0, T ;L2(Ω)) for which the solution (y, z) of (4.1)–(4.5)
satisfies y(., T ) = z(., T ) = 0.
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From now on we concentrate on the proof of Theorem 4.1.
It is well known (see [11]) that Theorem 4.1 is equivalent to prove an observability inequality for the adjoint system

of (4.1)–(4.5), namely

−pt − �p + (
b(x) − 1

)
p = (

b(x) − 1
)
q, (x, t) ∈ Ω × (0, T ), (4.6)

−qt + q = p, (x, t) ∈ Ω × (0, T ), (4.7)

p(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (4.8)

p(x,T ) = p0(x), x ∈ Ω, (4.9)

q(x,T ) = q0(x), x ∈ Ω. (4.10)

In fact, one can show that Theorem 4.1 is equivalent to the following:

Proposition 4.2. Let T , X, ω0 and ω be as in Theorem 1.1. Then there exists a constant C > 0 such that for all
(p0, q0) ∈ L2(Ω)2, the solution (p, q) of (4.6)–(4.10) satisfies

∫
Ω

[∣∣p(x,0)
∣∣2 + ∣∣q(x,0)

∣∣2]
dx � C

T∫
0

∫
X(ω,t,0)

∣∣q(x, t)
∣∣2

dx dt. (4.11)

Proof of Proposition 4.2. Inspired in part by [1] (which was concerned with a heat–wave system1), we shall establish
some Carleman estimates for the (backward) parabolic equation (4.6) and the ODE (4.7) with the same singular
weight.

For a better comprehension, the proof will be divided into two steps as follows:
Step 1. We apply suitable Carleman estimates for the parabolic equation (4.6) and the ODE (4.7), with the same

weights and with a moving control region.
Step 2. We estimate a local integral of p in terms of a local integral of q and some small order terms. Finally, we

combine all the estimates obtained in the first step and derive the desired Carleman inequality.
The basic weight function we need in order to prove such inequalities is given by the following lemma:

Lemma 4.3. Let X, ω0 and ω be as in Theorem 1.1, and let ω1 be a nonempty open set in RN such that

ω0 ⊂ ω1, ω1 ⊂ ω. (4.12)

Then there exist a number δ ∈ (0, T /2) and a function ψ ∈ C∞(Ω × [0, T ]) such that

∇ψ(x, t) �= 0, t ∈ [0, T ], x ∈ Ω \ X(ω1, t,0), (4.13)

ψt(x, t) �= 0, t ∈ [0, T ], x ∈ Ω \ X(ω1, t,0), (4.14)

ψt(x, t) > 0, t ∈ [0, δ], x ∈ Ω \ X(ω1, t,0), (4.15)

ψt(x, t) < 0, t ∈ [T − δ, T ], x ∈ Ω \ X(ω1, t,0), (4.16)

∂ψ

∂n
(x, t) � 0, t ∈ [0, T ], x ∈ ∂Ω, (4.17)

ψ(x, t) >
3

4
‖ψ‖L∞(Ω×(0,T )), t ∈ [0, T ], x ∈ Ω. (4.18)

The proof of Lemma 4.3 will be given in Appendix A.

1 See also [9] for some Carleman estimates for a coupled system of parabolic–hyperbolic equations.
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Next, we pick a function g ∈ C∞(0, T ) such that

g(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
t

for 0 < t < δ/2,

strictly decreasing for 0 < t � δ,

1 for δ � t � T
2 ,

g(T − t) for T
2 � t < T ,

and define the weights

ϕ(x, t) = g(t)(e
3
2 λ‖ψ‖L∞ − eλψ(x,t)), (x, t) ∈ Ω × (0, T ),

θ(x, t) = g(t)eλψ(x,t), (x, t) ∈ Ω × (0, T ),

where ‖ψ‖L∞ = ‖ψ‖L∞(Ω×(0,T )) and λ > 0 is a parameter.

Step 1. CARLEMAN ESTIMATES WITH THE SAME WEIGHT

In this step we apply a Carleman inequality for the heat-like equation (4.6) and a Carleman inequality for the ODE
(4.7), both with the same weight. We combine such inequalities and obtain a global estimation of p and q in terms of
local integrals of p and q .

For the purpose of the proof, we assume that the following two lemmas are true (their proof are given, respectively,
in Appendices B and C).

Lemma 4.4. There exist some constants λ0 > 0, s0 > 0 and C0 > 0 such that for all λ � λ0, all s � s0 and all
p ∈ C([0, T ];L2(Ω)) with pt + �p ∈ L2(0, T ;L2(Ω)), the following holds

T∫
0

∫
Ω

[
(sθ)−1(|�p|2 + |pt |2

) + λ2(sθ)|∇p|2 + λ4(sθ)3|p|2]e−2sϕ dx dt

� C0

( T∫
0

∫
Ω

|pt + �p|2e−2sϕ dx dt +
T∫

0

∫
X(ω1,t,0)

λ4(sθ)3|p|2e−2sϕ dx dt

)
. (4.19)

Lemma 4.5. There exist some numbers λ1 � λ0, s1 � s0 and C1 > 0 such that for all λ � λ1, all s � s1 and all
q ∈ H 1(0, T ;L2(Ω)), the following holds

T∫
0

∫
Ω

(
λ2sθ

)|q|2e−2sϕ dx dt � C1

( T∫
0

∫
Ω

|qt |2e−2sϕ dx dt +
T∫

0

∫
X(ω,t,0)

λ2(sθ)2|q|2e−2sϕ dx dt

)
. (4.20)

Applying the Carleman inequality given in Lemma 4.4 to the heat-like equation (4.6), we obtain

T∫
0

∫
Ω

[
(sθ)−1(|�p|2 + |pt |2

) + λ2(sθ)|∇p|2 + λ4(sθ)3|p|2]e−2sϕ dx dt

� C0

( T∫
0

∫
Ω

∣∣b(x − 1)(p − q)
∣∣2

e−2sϕ dx dt +
T∫

0

∫
X(ω1,t,0)

λ4(sθ)3|p|2e−2sϕ dx dt

)
. (4.21)

Next, we apply the Carleman inequality given by Lemma 4.5 to the ODE (4.7) and obtain

T∫
0

∫
Ω

(
λ2sθ

)|q|2e−2sϕ dx dt � C1

( T∫
0

∫
Ω

|q − p|2e−2sϕ dx dt +
T∫

0

∫
X(ω,t,0)

λ2(sθ)2|q|2e−2sϕ dx dt

)
. (4.22)
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Adding (4.21) and (4.22), it is not difficult to see that

T∫
0

∫
Ω

[
(sθ)−1(|�p|2 + |pt |2

) + λ2(sθ)|∇p|2 + λ4(sθ)3|p|2]e−2sϕ dx dt +
T∫

0

∫
Ω

(
λ2sθ

)|q|2e−2sϕ dx dt

� C

( T∫
0

∫
X(ω,t,0)

λ2(sθ)2|q|2e−2sϕ dx dt +
T∫

0

∫
X(ω1,t,0)

λ4(sθ)3|p|2e−2sϕ dx dt

)
(4.23)

for appropriate s � s2 � s1 and λ � λ2 � λ1.

Step 2. ARRANGEMENTS AND CONCLUSION

In this step we estimate the local integral of p appearing in (4.23) by a local integral of q and some small order
terms. Finally, using semigroup theory, we finish the proof of Proposition 4.2.

The main result of this step is the following.

Lemma 4.6. There exist some numbers λ2 � λ1, s2 � s1 and C2 > 0 such that for all λ � λ2, all s � s2 and all
(p0, q0) ∈ L2(Ω)2, the corresponding solution (p, q) of system (4.6)–(4.10) fulfills

T∫
0

∫
Ω

[
(sθ)−1(|�p|2 + |pt |2

) + λ2(sθ)|∇p|2 + λ4(sθ)3|p|2]e−2sϕ dx dt +
T∫

0

∫
Ω

(
λ2sθ

)|q|2e−2sϕ dx dt

� C2

T∫
0

∫
X(ω,t,0)

λ8(sθ)7e−2sϕ |q|2 dx dt. (4.24)

Proof of Lemma 4.6. In order to prove Lemma 4.6, we just need to estimate the p appearing in the right hand side
of (4.23). For that, we introduce the function

ζ(x, t) := ξ
(
X(x,0, t)

)
, (4.25)

where ξ is a cut-off function satisfying

ξ ∈ C∞
0 (ω), (4.26)

0 � ξ(x) � 1, x ∈ RN, (4.27)

ξ(x) = 1, x ∈ ω1. (4.28)

We have that

T∫
0

∫
X(ω1,t,0)

λ4(sθ)3|p|2e−2sϕ dx dt �
T∫

0

∫
Ω

ζλ4(sθ)3|p|2e−2sϕ dx dt (4.29)

and we use (4.7) to write

T∫
0

∫
Ω

ζλ4(sθ)3|p|2e−2sϕ dx dt =
T∫

0

∫
Ω

ζλ4(sθ)3pqe−2sϕ dx dt

+
T∫

0

∫
Ω

ζλ4(sθ)3p(−qt )e
−2sϕ dx dt =: M1 + M2. (4.30)

It remains to estimate M1 and M2. Using the Cauchy–Schwarz inequality and (4.26)–(4.27), we have, for every
ε > 0,
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|M1| � ε

T∫
0

∫
Ω

λ4(sθ)3|p|2e−2sϕ dx dt + 1

4ε

T∫
0

∫
X(ω,t,0)

λ4(sθ)3|q|2e−2sϕ dx dt. (4.31)

On the other hand, integrating by parts with respect to t in M2 yields

M2 =
T∫

0

∫
Ω

ζλ4(sθ)3ptqe−2sϕ dx dt +
T∫

0

∫
Ω

ζλ4(3s3θ2θt − 2s4ϕtθ
3)pqe−2sϕ dx dt

−
T∫

0

∫
Ω

∇ξ
(
X(x,0, t)

) ·
(

∂X

∂x

)−1(
X(x,0, t), t,0

)
f (x, t)λ4(sθ)3pqe−2sϕ dx dt

=: M1
2 + M2

2 − M3
2 .

For M1
2 , we notice that for every ε > 0,

∣∣M1
2

∣∣ � ε

T∫
0

∫
Ω

(sθ)−1|pt |2e−2sϕ dx dt + 1

4ε

T∫
0

∫
X(ω,t,0)

λ8(sθ)7|q|2e−2sϕ dx dt. (4.32)

Since |θt | + |ϕt | � Cλθ2, we infer that

∣∣M2
2

∣∣ � C

T∫
0

∫
Ω

ζs4(λθ)5|pq|e−2sϕ dx dt

� ε

T∫
0

∫
Ω

λ4(sθ)3|p|2e−2sϕ dx dt + C

εs2

T∫
0

∫
X(ω,t,0)

λ6(sθ)7|q|2e−2sϕ dx dt. (4.33)

Finally, M3
2 is estimated as M1:

∣∣M3
2

∣∣ � ε

T∫
0

∫
Ω

λ4(sθ)3|p|2e−2sϕ dx dt + C

ε

T∫
0

∫
X(ω,t,0)

λ4(sθ)3|q|2e−2sϕ dx dt. (4.34)

Gathering together (4.23) and (4.29)–(4.34) and taking ε small enough, we obtain (4.24).
Now we finish the proof of the observability inequality (4.11).
Pick any (p0, q0) ∈ L2(Ω)2, and denote by (p, q) the solution of (4.6)–(4.10). Note that p ∈ C([0, T ];L2(Ω)) ∩

L2(0, T ;H 1
0 (Ω)) and that q ∈ H 1(0, T ;L2(Ω)). Using classical semigroup estimates, one derives at once (4.11)

from (4.24). �
5. Final comments

5.1. Another decomposition

As commented in the introduction, there is another splitting of the operator L= ∂2
t − � − �∂t + ∂t , given by

L= (∂t − �)(∂t + Id).

Thus, letting

v(x, t) = y(x, t) + yt (x, t),

we see that (1.1) may be written as



Author's personal copy

F.W. Chaves-Silva et al. / J. Math. Pures Appl. 101 (2014) 198–222 211

vt − �v = 1ω(t)h + (
1 − b(x)

)
(v − y), (5.1)

yt + y = v, (5.2)

which is a coupled system of the parabolic equation (5.1) and the ODE (5.2).
This splitting was used to prove Theorem 1.1 with less assumptions on the trajectories (see Section 2).
The control term h acts directly in the heat equation and indirectly in the ODE through the coupling term v.

The problem can be treated directly as such, with requires further work at the level of the dual observability problem
since both components of the adjoint system will be needed to be observed by partial measurements only on one of its
components. The problem can also be addressed incorporating in (5.2) an additional auxiliary control acting directly
in the ODE. This leads to the system

vt − �v = 1ω(t)h + (
1 − b(x)

)
(v − y), (5.3)

yt + y = 1ω(t)k + v, (5.4)

where (v, y) ∈ L2(Ω)2 is the state function to be controlled, and (h, k) ∈ L2(0, T ;L2(Ω)2) is the control input.
Once the controllability of this system is proved, when going back to the original viscoelasticity equation, one gets

ytt − �y − �yt + b(x)yt = 1ω(t)

[
h − (

1 − b(x)
)
k
] + (∂t − �)[1ω(t)k]. (5.5)

But, then, the second control 1ω(t)k enters under the action of the heat operator. It is then necessary to ensure that the
control k is smooth enough and, furthermore, to replace in (5.4) the cut-off function 1ω(t) by a regularized version.
These are technicalities that can be overcome with further work. To be more precise, the control in (5.5) takes the
form 1X(ω,t,0)(x)h̃ with h̃ ∈ L2(0, T ;L2(Ω)), provided that both h, k ∈ L2(0, T ;L2(Ω)) and

k ∈ H 1(0, T ;L2(Ω)
) ∩ L2(0, T ;H 2(Ω)

)
.

Therefore special attention has to be paid to obtain smooth controls for the transport equation (see Section 2).

5.2. Manifolds without boundary

The lack of propagation properties of the ODE (1.10) in the space variable requires the control to move in time.
As we mentioned in the introduction, through a suitable change of variables, this is equivalent to keeping the support
of the control fixed but replacing the ODE by a transport equation. Obviously, attention has to be paid to the Dirichlet
boundary conditions when performing this change of variables. Of course, this is no longer an issue when the model
is considered in a smooth manifold without boundary. As an example of such a situation we consider the periodic case
in the torus

x ∈ TN := RN/ZN. (5.6)

For a moving control with a constant velocity ω(t) = {x − ct; x ∈ ω}, c ∈ RN \ {0}, system (1.9)–(1.10) can be put
in the form of a coupled system of parabolic–hyperbolic equations

vt − �v − c · ∇v + (
b(x + ct) − 1

)
v = w, (5.7)

wt − c · ∇w + w = 1ω(x)h̃ + (
b(x + ct) − 1

)
v (5.8)

by letting

v(x, t) = y(x + ct, t), (5.9)

w(x, t) = z(x + ct, t), (5.10)

h̃(x, t) = h(x + ct, t). (5.11)

The system is now constituted by the coupling between a heat and a transport equation with control h̃ with fixed
support. Once more, the problem now can be treated by means of the classical duality principle between the control-
lability problem and the observability property of the adjoint system. The later was solved in [21] in one dimension
using Fourier analysis techniques and in this paper we do it using Carleman inequalities.
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Fig. 6. Sign of the time derivative of ψ .

Note that the Carleman approach developed in this paper cannot be applied as it is to the periodic case. Consider
for instance the case of the torus T. A weight ψ ∈ C∞(T × (0, T )) as in Lemma 4.3 does not exist, because of the
periodicity in x (see Fig. 6). However, it is well known that the periodic case can be deduced from both the Dirichlet
case and the Neumann case (using classical extensions by reflection, see e.g. [26]). Even if the Neumann case was not
considered in this paper, it is likely that it could be treated in much the same way as we did for the Dirichlet case.

6. Open problems and further questions

The main result of this paper concerns the controllability of a coupled system consisting on a heat equation and
an ODE. By addressing the dual problem of observability and making the controller/observer move in time, this ends
being very close to the problem of observability of a coupled system of a heat equation and a first order transport
equation. The techniques we have developed here are inspired in the work [1] where the key point was to use the same
weight function for the Carleman inequality in both the heat and the transport equation.

The system under consideration, coupling a heat and a hyperbolic equation, is close to that of thermoelasticity that
was considered in [17]. But, there, the problem was only dealt with in the case of manifolds without boundary, by
means of spectral decomposition techniques allowing to decouple the system into the parabolic and the hyperbolic
components. As far as we know, a complete analysis of the system of thermoelasticity using Carleman type inequalities
seems to be not developed so far.

The structure of the parabolic–transport system we consider is also, in some sense, similar to the one considered in
[9] for the 1-d compressible Navier–Stokes equation although, in the latter, the system is of nonlinear nature requiring
significant extra analysis beyond the linearized model.

Our analysis is also related to recent works on the control of parabolic equations with memory terms as for instance
in [12]. Note that the system (1.9)–(1.10) in the particular case b ≡ 1 and z(0) ≡ 0, in the absence of the control h and
the addition of a control of the form 1ω(t)k in the first equation, can be written as an integro-differential equation

yt − �y + (b − 1)

[
y −

t∫
0

es−t y(x, s) ds

]
= 1ω(t)k. (6.1)

This system is closely related to the one considered in [12]. There it is shown that the system lacks to be null control-
lable. This is in agreement with our results that, in the particular case under consideration, show also that a moving
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control could bypass this limitation. It would be interesting to analyze to which extent this idea of controlling by
moving the support of the control can be of use for more general parabolic equations with memory terms.

In this paper we have shown the null controllability of a linear system which consists of a parabolic equation and
an ordinary differential equation that arise from the identification of the parabolic and hyperbolic parts of system
(1.1)–(1.2). Besides, coupled systems consisting of parabolic equations and ODE’s are important since they appear in
biological models of chemotaxis or interactions between cellular process and diffusing growth factors (see [13,20,23]
and references therein). Systems governing these phenomena are, in general, nonlinear and have the form

ut = f (u, v), (6.2)

vt = D�v + g(u, v), (6.3)

where v and u are vectors, D is a diagonal matrix with positive coefficients and f and g are real functions.
Other area where coupled parabolic–ODE systems play a major role is electrocardiology (see [3,7,28] and ref-

erences therein). Here the cardiac activity is described by the bidomain model, which consists of a system of two
degenerate parabolic reaction–diffusion equations, representing the intra- and extracellular potential in the cardiac
muscle, coupled with a system of ordinary differential equations representing the ionic currents flowing through the
cellular membrane. The bidomain model is given by

χCmvt − div (Di∇ui) + χIion(v,w) = I i
app, (6.4)

−χCmvt − div (De∇ue) − χIion(v,w) = −I e
app, (6.5)

wt − R(v,w) = 0, (6.6)

where ui and ue are the intra- and extracellular potentials, v is the transmembrane potential, χ is the ratio of membrane
area per tissue volume, Cm is the surface capacitance of the membrane, Iion is the ionic current, I i,e

app is an applied
current and Di,e are conductivity tensors.

Concerning controllability of coupled parabolic–ODE systems, just a few results for some particular systems are
known (see [8] and [19] for the controllability of a simplified one-dimensional model for the motion of a rigid body in
a viscous fluid). We believe that ideas presented in this paper can be used for the study of the controllability for other
systems of parabolic–ODE equations, such as (6.2)–(6.3) and (6.4)–(6.6).
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Appendix A. Proof of Lemma 4.3

Proof. Pick any δ < min(t1, T − t2, T /2). We search ψ (see Fig. 6) in the form

ψ(x, t) = ψ1(x, t) + C2ψ2(x, t) + C3 (A.1)

where, roughly, ψ1 fulfills (4.13), ψ2 fulfills (4.14)–(4.16) together with ∇ψ2 ≡ 0 outside X(ω1, t,0), and C2,C3 are
(large enough) positive constants.

Step 1. CONSTRUCTION OF ψ1
Let Γ ∈ C∞([0, T ];RN) be as in (1.13), and let ε > 0 be such that

B
(
Γ (t),3ε

) ⊂ X(ω0, t,0) ∩ Ω, t ∈ [0, T ].
We choose a vector field f̃ ∈ C∞(RN × [0, T ];RN) such that
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f̃ (x, t) =
{

Γ̇ (t) if t ∈ [0, T ], x ∈ B(Γ (t), ε),

0 if t ∈ [0, T ], x ∈ RN \ B(Γ (t),2ε).

Let X̃ denote the flow associated with f̃ ; that is, X̃ solves

∂X̃

∂t
(x, t, t0) = f̃

(
X̃(x, t, t0), t

)
, (x, t, t0) ∈ RN × [0, T ]2,

X̃(x, t0, t0) = x, (x, t0) ∈ RN × [0, T ].
Note that

X̃
(
y + Γ (0), t,0

) = y + Γ (t) if (y, t) ∈ B(0, ε) × [0, T ],
X̃(x, t, t0) = x if dist(x, ∂Ω) < ε, (t, t0) ∈ [0, T ]2.

By a well-known result (see [14, Lemma 1.2]), there exists a function ψ̃ ∈ C∞(Ω) such that

ψ̃(x) > 0 if x ∈ Ω;
ψ̃(x) = 0 if x ∈ ∂Ω;

∇ψ̃(x) �= 0 if x ∈ Ω \ B
(
Γ (0), ε

)
.

Actually, the function ψ̃ given in [14] is only of class C2, but the regularity C∞ can be obtained by mollification with
a partition of unity (see e.g. [25, Lemma 4.2]). Let us set

ψ1(x, t) = ψ̃
(
X̃(x,0, t)

)
.

Then ψ1 ∈ C∞(Ω × [0, T ]) and it fulfills

ψ1(x, t) > 0 if (x, t) ∈ Ω × [0, T ], (A.2)

ψ1(x, t) = 0 if (x, t) ∈ ∂Ω × [0, T ], (A.3)

∇ψ1(x, t) = ∇ψ̃
(
X̃(x,0, t)

)∂X̃

∂x
(x,0, t) �= 0 if x ∈ Ω \ X(ω0, t,0). (A.4)

For (A.4), we notice that if we write x = X̃(x̃, t,0), then x̃ = X̃(x,0, t) hence

∇ψ̃
(
X̃(x,0, t)

) = ∇ψ̃(x̃) �= 0

if x̃ /∈ B(Γ (0), ε), which is equivalent to x /∈ B(Γ (t), ε). The last condition is satisfied when x /∈ X(ω0, t,0).

Step 2. CONSTRUCTION OF ψ2
From (1.15), (1.16), and (1.17), we can pick two curves γ1 ∈ C0([0, t2);Ω) and γ2 ∈ C0((t1, T ];Ω) such that

γ1(t) /∈ X(ω0, t,0), 0 � t < t2,

γ2(t) /∈ X(ω0, t,0), t1 < t � T .

We infer from (1.17) that for any t ∈ (t1, t2), γ1(t) and γ2(t) do not belong to the same connected component
of Ω \ X(ω0, t,0). Let Ω1(t) (resp. Ω2(t)) denote the connected component of γ1(t) (resp. γ2(t)) for 0 � t < t2
(resp. for t1 < t � T ). Clearly

Ω \ X(ω0, t,0) =
⎧⎨
⎩

Ω1(t), if 0 � t � t1,

Ω1(t) ∪ Ω2(t), if t1 < t < t2,

Ω2(t), if t2 � t � T .

Set Ω1(t) = ∅ for t ∈ [t2, T ], and Ω2(t) = ∅ for t ∈ [0, t1]. Let ψ2 ∈ C∞(Ω × [0, T ]) with

ψ2(x, t) = t
(
1Ω1(t)(x) − 1Ω2(t)(x)

)
for t ∈ [0, T ], x ∈ Ω \ X(ω1, t,0),

∂ψ2

∂n
= 0 for (x, t) ∈ ∂Ω × [0, T ].
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Such a function ψ2 exists, since by (4.12)

inf
t1<t<t2

dist
(
Ω1(t) \ X(ω1, t,0),Ω2(t) \ X(ω1, t,0)

)
> 0.

Then

∂ψ2

∂t
=

{
1 if 0 � t < t2 and x ∈ Ω1(t) \ X(ω1, t,0),

−1 if t1 < t � T and x ∈ Ω2(t) \ X(ω1, t,0),

and

∇ψ2(x, t) = 0 if x ∈ Ω \ X(ω1, t,0).

Note that (4.14)–(4.16) are satisfied for ψ2. Note also that for any pair (τ1, τ2) with 0 � τ1 < τ2 � T , the set

Kτ1,τ2 := {
(x, t) ∈ RN+1; τ1 � t � τ2, x ∈ Ω \ X(ω1, t,0)

}
is compact.

Step 3. CONSTRUCTION OF ψ

Let ψ be defined as in (A.1), with C2 > 0 and C3 to be determined. Then (4.13) and (4.17) are satisfied. We pick
C2 large enough for (4.14)–(4.16) to be satisfied. Finally, (4.18) is satisfied for C3 large enough. �
Appendix B. Proof of Lemma 4.4

Proof. The method of the proof is widely inspired from [11], and the computations are presented as in [25, Proof of
Proposition 4.3].

Let v = e−sϕp and P = ∂t + �. Then

e−sϕPp = e−sϕP
(
esϕv

) = Psv + Pav

where

Psv = �v + (
sϕt + s2|∇ϕ|2)v, (B.1)

Pav = vt + 2s∇ϕ · ∇v + s(�ϕ)v (B.2)

denote the (formal) self-adjoint and skew-adjoint parts of e−sϕP (esϕ ·), respectively. It follows that∥∥e−sϕPp
∥∥2 = ‖Psv‖2 + ‖Pav‖2 + 2(Psv,Pav) (B.3)

where (f, g) = ∫ T

0

∫
Ω

fg dx dt , ‖f ‖2 = (f,f ). In the sequel,
∫ T

0

∫
Ω

f (x, t) dx dt is denoted
∫∫

f for the sake of
shortness. We have

(Psv,Pav) = (�v, vt ) + (�v,2s∇ϕ · ∇v) + (
�v, s(�ϕ)v

) + (
sϕtv + s2|∇ϕ|2v, vt

)
+ (

sϕtv + s2|∇ϕ|2v,2s∇ϕ · ∇v
) + (

sϕtv + s2|∇ϕ|2v, s(�ϕ)v
)

=: I1 + I2 + I3 + I4 + I5 + I6. (B.4)

First, observe that

I1 = −
∫ ∫

∇v · ∇vt = 0. (B.5)

Using the convention of repeated indices and denoting ∂i = ∂/∂xi , we obtain that

I2 = 2s

∫ ∫
∂2
j v ∂iϕ ∂iv

= −2s

∫ ∫
∂j v(∂j ∂iϕ∂iv + ∂iϕ∂j ∂iv) + 2s

T∫
0

∫
∂Ω

(∂j v)nj ∂iϕ∂iv dσ.
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Since v = 0 for (x, t) ∈ ∂Ω × (0, T ), ∇v = (∂v/∂n)n, so that ∇ϕ · ∇v = (∂ϕ/∂n)(∂v/∂n) and

T∫
0

∫
∂Ω

(∂j v)nj ∂iϕ∂iv dσ =
T∫

0

∫
∂Ω

(∂ϕ/∂n)|∂v/∂n|2 dσ.

It follows that

I2 = −2s

∫ ∫
∂j ∂iϕ∂j v∂iv − s

∫ ∫
∂iϕ∂i

(|∂j v|2) + 2s

T∫
0

∫
∂Ω

(∂ϕ/∂n)|∂v/∂n|2 dσ

= −2s

∫ ∫
∂j ∂iϕ∂j v∂iv + s

∫ ∫
�ϕ|∇v|2 = 0 + s

T∫
0

∫
∂Ω

(∂ϕ/∂n)|∂v/∂n|2 dσ. (B.6)

On the other hand, integrations by parts in x yields

I3 = −s

∫ ∫
∇v · (v∇(�ϕ) + (�ϕ)∇v

) = s

∫ ∫
�2ϕ

|v|2
2

− s

∫ ∫
�ϕ|∇v|2 (B.7)

and integration by parts with respect to t gives

I4 = −
∫ ∫ (

sϕtt + s2∂t |∇ϕ|2) |v|2
2

·
Integrating by parts with respect to x in I5 yields

I5 = −
∫ ∫

s2∇ · (ϕt∇ϕ)|v|2 −
∫ ∫

s3∇ · (|∇ϕ|2∇ϕ
)|v|2. (B.8)

Gathering (B.4)–(B.8), we infer that

2(Psv,Pav) = −4s

∫ ∫
∂j ∂iϕ∂j v∂iv + 2s

T∫
0

∫
∂Ω

(∂ϕ/∂n)|∂v/∂n|2 dσ

+
∫ ∫

|v|2[s(�2ϕ − ϕtt

) − 2s2∂t |∇ϕ|2 − 2s3∇ϕ · ∇|∇ϕ|2].
Consequently, (B.3) may be rewritten

∥∥e−sϕPp
∥∥2 = ‖Psv‖2 + ‖Pav‖2 − 4s

∫ ∫
∂j ∂iϕ∂j v∂iv + 2s

T∫
0

∫
∂Ω

(∂ϕ/∂n)|∂v/∂n|2 dσ

+
∫ ∫

|v|2[s(�2ϕ − ϕtt

) − 2s2∂t |∇ϕ|2 − 2s3∇ϕ · ∇|∇ϕ|2].
Claim 1. There exist some numbers λ1 > 0, s1 > 0 and A ∈ (0,1) such that for all λ � λ1 and all s � s1,∫ ∫

|v|2[s(�2ϕ − ϕtt

) − 2s2∂t |∇ϕ|2 − 2s3∇ϕ · ∇|∇ϕ|2]

+ A−1λs3

T∫
0

∫
X(ω1,t,0)

(λθ)3|v|2 � Aλs3
∫ ∫

(λθ)3|v|2. (B.9)

Proof of Claim 1. Easy computations show that

∂iϕ = −λg(t)eλψ∂iψ, ∂j ∂iϕ = −g(t)eλψ
(
λ2∂iψ∂jψ + λ∂j ∂iψ

)
(B.10)
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and

−∇|∇ϕ|2 · ∇ϕ = −2(∂j ∂iϕ)∂iϕ∂jϕ = 2
(
λgeλψ

)3(
λ|∇ψ |4 + ∂j ∂iψ∂iψ∂jψ

)
.

It follows from (4.13) that for λ large enough, say λ � λ1, we have that

−∇|∇ϕ|2 · ∇ϕ � Aλ(λθ)3, t ∈ [0, T ], x ∈ Ω \ X(ω1, t,0), (B.11)∣∣∇|∇ϕ|2 · ∇ϕ
∣∣ � A−1λ(λθ)3, t ∈ [0, T ], x ∈ X(ω1, t,0), (B.12)

for some constant A ∈ (0,1). According to (4.18), we have for some constant C > 0∣∣�2ϕ
∣∣ + |ϕtt | +

∣∣∂t |∇ϕ|2∣∣ � Cλ(λθ)3, t ∈ [0, T ], x ∈ Ω.

Therefore, we infer that for s large enough, say s � s1, and for all λ � λ1 we have that

s
(
�2ϕ − ϕtt

) − 2s2∂t |∇ϕ|2 − 2s3∇ϕ · ∇|∇ϕ|2 � Aλs3(λθ)3, t ∈ [0, T ], x ∈ Ω \ X(ω1, t,0),∣∣s(�2ϕ − ϕtt

) − 2s2∂t |∇ϕ|2 − 2s3∇ϕ · ∇|∇ϕ|2∣∣ � 3A−1λs3(λθ)3, t ∈ [0, T ], x ∈ X(ω1, t,0).

This gives (B.9) with a possibly decreased value of A. �
Thus, using the fact that ∂ϕ/∂n � 0 on ∂Ω by (4.17), we conclude that

‖Psv‖2 + ‖Pav‖2 + Aλs3
∫ ∫

(λθ)3|v|2

�
∥∥e−sϕPp

∥∥2 + 4s

∫ ∫
∂j ∂iϕ∂j v∂iv + A−1λs3

T∫
0

∫
X(ω1,t,0)

(λθ)3|v|2. (B.13)

Claim 2. There exist some numbers λ2 � λ1 and s2 � s1 such that for all λ � λ2 and all s � s2,

λs

∫ ∫
(λθ)|∇v|2 + λs−1

∫ ∫
(λθ)−1|�v|2 � C

(
s−1‖Psv‖2 + λs3

∫ ∫
(λθ)3|v|2

)
. (B.14)

Proof of Claim 2. By (B.1), we have

s−1
∫ ∫

(λθ)−1|�v|2 = s−1
∫ ∫

(λθ)−1
∣∣Psv − sϕtv − s2|∇ϕ|2v∣∣2

� Cs−1
∫ ∫

(λθ)−1(|Psv|2 + s2|ϕt |2|v|2 + s4(λθ)4|v|2)

� C

(‖Psv‖2

λs
+ s3

∫ ∫
(λθ)3|v|2

)
(B.15)

provided that s and λ are large enough, where we used (4.18) in the last line to bound ϕt . On the other hand,

λs

∫ ∫
(λθ)|∇v|2 = λs

{∫ ∫
(λθ)(−�v)v −

∫ ∫ (∇(λθ) · ∇v
)
v

}

� λ

2s

∫ ∫
(λθ)−1|�v|2 + λs3

2

∫ ∫
(λθ)3|v|2 + λs

2

∫ ∫
�(λθ)|v|2

� C

(
s−1‖Psv‖2 + λs3

∫ ∫
(λθ)3|v|2

)
(B.16)

by (B.15), provided that s � s2 � s1 and λ � λ2 � λ1. Then (B.14) follows from (B.15)–(B.16). �
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We infer from (B.13)–(B.14) that

‖Pav‖2 + λs

∫ ∫
(λθ)|∇v|2 + λs−1

∫ ∫
(λθ)−1|�v|2 + λs3

∫ ∫
(λθ)3|v|2

� C

(∥∥e−sϕPp
∥∥2 + 4s

∫ ∫
∂j ∂iϕ∂j v∂iv + A−1λs3

T∫
0

∫
X(ω1,t,0)

(λθ)3|v|2
)

. (B.17)

By (B.10),

s

∫ ∫
∂j ∂iϕ∂j v∂iv � −sλ

∫ ∫
g(t)eλψ∂j ∂iψ∂jv∂iv � Cs

∫ ∫
(λθ)|∇v|2.

Therefore, for λ large enough and s � s2,

‖Pav‖2 + λs3
∫ ∫

(λθ)3|v|2 + λs

∫ ∫
(λθ)|∇v|2 + λs−1

∫ ∫
(λθ)−1|�v|2

� C

(∥∥e−sϕPp
∥∥2 + λs3

T∫
0

∫
X(ω1,t,0)

(λθ)3|v|2
)

. (B.18)

Using (B.2) and (B.18), we see that for λ large enough and s � s2

λs−1
∫ ∫

(λθ)−1|vt |2 � Cλs−1
∫ ∫

(λθ)−1(|Pav|2 + s2|∇ϕ|2|∇v|2 + s2|�ϕ|2|v|2)

� C
(∥∥e−sϕPp

∥∥2 + λs3

T∫
0

∫
X(ω1,t,0)

(λθ)3|v|2).
Hence, there exists some number λ3 � λ2 such that for all λ � λ3 and all s � s2, we have

λs3
∫ ∫

(λθ)3|v|2 + λs

∫ ∫
(λθ)|∇v|2 + λs−1

∫ ∫
(λθ)−1(|�v|2 + |vt |2

)

� C

(∥∥e−sϕPp
∥∥2 + λs3

T∫
0

∫
X(ω1,t,0)

(λθ)3|v|2
)

. (B.19)

Replacing v by e−sϕp in (B.19) gives at once (4.19). The proof of Lemma 4.4 is complete. �
Appendix C. Proof of Lemma 4.5

Proof of Lemma 4.5. The proof is divided into three parts corresponding to the estimates for t ∈ [0, δ], for
t ∈ [δ, T − δ] and for t ∈ [T − δ, T ]. The estimates for t ∈ [0, δ] and for t ∈ [T − δ, T ] being similar, we shall
prove only the first ones.

Let v = e−sϕq . Then

e−sϕqt = e−sϕ
(
esϕv

)
t
= sϕtv + vt =: Psv + Pav. (C.1)

Claim 3.
δ∫

0

∫
Ω

λ(sθ)2|v|2 dx dt � C

( δ∫
0

∫
Ω

λ−1
∣∣e−sϕqt

∣∣2
dx dt

+
∫
Ω

[
(1 − ζ )2(sθ)|v|2]|t=δ

dx +
δ∫

0

∫
X(ω,t,0)

λ(sθ)2|v|2 dx dt

)
, (C.2)

where ζ is the function introduced in (4.25).
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To prove the claim, we compute in several ways

I :=
δ∫

0

∫
Ω

(
e−sϕqt

)
(1 − ζ )2sθv dx dt.

We split I into

I =
δ∫

0

∫
Ω

(Psv)(1 − ζ )2sθv dx dt +
δ∫

0

∫
Ω

(Pav)(1 − ζ )2sθv dx dt =: I1 + I2.

Then

I1 =
δ∫

0

∫
Ω

(1 − ζ )2s2ϕtθv2 dx dt

=
δ∫

0

∫
Ω

[
g′(e 3

2 λ‖ψ‖L∞ − eλψ
) − gλψte

λψ
]
(1 − ζ )2s2geλψv2 dx dt.

On the other hand

I2 =
δ∫

0

∫
Ω

(1 − ζ )2(sgeλψvvt

)
dx dt

= 1

2

∫
Ω

[
(1 − ζ )2sθ |v|2]|t=δ

dx −
δ∫

0

∫
Ω

s
[
g′eλψ + gλψte

λψ
]
(1 − ζ )2 v2

2
dx dt

−
δ∫

0

∫
Ω

(1 − ζ )∇ξ
(
X(x,0, t)

) ·
(

∂X

∂x

)−1(
X(x,0, t), t,0

)
f (x, t)sθv2 dx dt,

where we used the fact that [θ |v|2]|t=0 = 0. Clearly, since θ � 1, for s � 1

∣∣∣∣∣
δ∫

0

∫
Ω

(1 − ζ )∇ξ
(
X(x,0, t)

) ·
(

∂X

∂x

)−1(
X(x,0, t), t,0

)
f (x, t)sθv2 dx dt

∣∣∣∣∣ � C

δ∫
0

∫
X(ω,t,0)

(sθ)2|v|2 dx dt.

On the other hand, using (4.15), we see that there exist some constants C > 0 and s1 � s0 such that for all s � s1 and
all λ � λ0 > 0, it holds

gλψte
λψ

(
s2geλψ + s

2

)
� Cλ(sθ)2, t ∈ (0, δ), x ∈ Ω \ X(ω1, t,0),

−g′(t)
((

e
3
2 λ‖ψ‖L∞ − eλψ

)
s2geλψ − s

2
eλψ

)
> 0, t ∈ (0, δ), x ∈ Ω \ X(ω1, t,0).

It follows that for some positive constant C′ > C

C

δ∫
0

∫
Ω

λ(sθ)2|v|2 dx dt � −I + 1

2

∫
Ω

[
(1 − ζ )2(sθ)|v|2]|t=δ

dx + C′
δ∫

0

∫
X(ω,t,0)

λ(sθ)2|v|2 dx dt. (C.3)

Finally, by the Cauchy–Schwarz inequality, we have for any κ > 0
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|I | � (4κ)−1

δ∫
0

∫
Ω

∣∣e−sϕqt

∣∣2
dx dt + κ

δ∫
0

∫
Ω

(sθ)2|v|2 dx dt. (C.4)

Combining (C.3) with (C.4) gives (C.2) for κ/λ > 0 small enough. Therefore, Claim 3 is proved. �
We can prove in the same way the following estimate for t ∈ [T − δ, T ]:

T∫
T −δ

∫
Ω

λ(sθ)2|v|2 dx dt � C

( T∫
T −δ

∫
Ω

λ−1
∣∣e−sϕqt

∣∣2
dx dt

+
∫
Ω

[
(1 − ζ )2(sθ)|v|2]|t=T −δ

dx +
T∫

T −δ

∫
X(ω,t,0)

λ(sθ)2|v|2 dx dt

)
. (C.5)

Let us now consider the estimate for t ∈ [δ, T − δ].

Claim 4.
T −δ∫
δ

∫
Ω

λ2(sθ)|v|2 dx dt +
∫
Ω

[
(1 − ζ )2(λsθ)|v|2]|t=δ

dx +
∫
Ω

[
(1 − ζ )2(λsθ)|v|2]|t=T −δ

dx

� C

( T −δ∫
δ

∫
Ω

∣∣e−sϕqt

∣∣2
dx dt +

T −δ∫
δ

∫
X(ω,t,0)

λ2(sθ)|v|2 dx dt

)
. (C.6)

‖ · ‖ and (., .) denoting here the Euclidean norm and scalar product in L2(Ω × (δ, T − δ)), we have that∥∥e−sϕqt

∥∥2 �
∥∥(1 − ζ )(sϕtv + vt )

∥∥2 � 2
(
(1 − ζ )sϕtv, (1 − ζ )vt

)
. (C.7)

Next, we compute(
(1 − ζ )sϕtv, (1 − ζ )vt

)
=

∫
Ω

(1 − ζ )2sϕt

v2

2
dx

∣∣∣∣
T −δ

t=δ

− s

2

T −δ∫
δ

∫
Ω

(1 − ζ )2ϕtt |v|2 dx dt

−
T −δ∫
δ

∫
Ω

(1 − ζ )∇ξ
(
X(x,0, t)

) ·
(

∂X

∂x

)−1(
X(x,0, t), t,0

)
f (x, t)sϕtv

2 dx dt. (C.8)

Since g(t) = 1 for t ∈ [δ, T − δ], we have that ϕt = −λψte
λψ . From (4.15)–(4.16), we infer that

sϕt (x, T − δ) � Cλseλψ, x ∈ Ω \ X(ω1, T − δ,0),

−sϕt (x, δ) � Cλseλψ, x ∈ Ω \ X(ω1, δ,0).

Therefore, using (4.28),∫
Ω

(1 − ζ )2sϕt

v2

2
dx

∣∣∣∣
T −δ

δ

� C

(∫
Ω

[
(1 − ζ )2(λsθ)|v|2]|t=δ

dx +
∫
Ω

[
(1 − ζ )2(λsθ)|v|2]|t=T −δ

dx

)
. (C.9)

Next, with ϕtt = −{(λψt )
2 + λψtt }eλψ and (4.14), we obtain for λ � λ1 > λ0

− s

2

T −δ∫
δ

∫
Ω

(1 − ζ )2ϕtt |v|2 dx dt � C

T −δ∫
δ

∫
Ω

(1 − ζ )2λ2sθ |v|2 dx dt. (C.10)
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Finally ∣∣∣∣∣
T −δ∫
δ

∫
Ω

(1 − ζ )∇ξ
(
X(x,0, t)

) ·
(

∂X

∂x

)−1(
X(x,0, t), t,0

)
f (x, t)sϕtv

2 dx dt

∣∣∣∣∣ � C

T −δ∫
δ

∫
X(ω,t,0)

λsθ |v|2. (C.11)

Claim 4 follows from (C.7)–(C.11). �
We infer from (C.2), (C.5) and (C.6) that for some constants λ1 � λ0, s1 � s0 and C1 > 0 we have for all λ � λ1

and all s � s1

T∫
0

∫
Ω

λ2(sθ)|v|2 dx dt � C1

( T∫
0

∫
Ω

∣∣e−sϕqt

∣∣2
dx dt +

T∫
0

∫
X(ω,t,0)

λ2(sθ)2|v|2 dx dt

)
. (C.12)

Replacing v by e−sϕq in (C.12) gives at once (4.20). The proof of Lemma 4.5 is complete. �
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