Asymptotic behaviour of solutions to the dissipative quasi-geostrophic equation.

César J. Niche *

In this talk we present results concerning the asymptotic behaviour of solutions to the 2D dissipative quasigeostrophic equation

$$\begin{array}{rcl} \theta_t + (u\cdot\nabla)\theta + (-\Delta)^\alpha\theta &=& 0\\ \\ \theta_0(x) &=& \theta(x,0) \end{array}$$

for $\alpha > 1/2$ and $u = R^{\perp}\theta = (-R_2\theta, R_1\theta)$, for R_i the Riesz transform in the variable x_i . More precisely, we will show that for initial data in L^1 , solutions converge in L^p , for $1 \le p < \infty$, with definite decay rates, to a rescaled multiple of the solution to the linear part. This is joint work with Clayton Bjorland (Univ. of Texas - Austin).

^{*}Depto. de Matemática Aplicada, UFRJ, RJ, Brasil, e-mail: cniche@im.ufrj.br