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Resumo

O principal objetivo deste trabalho é apresentar uma generalização do importante inva-

riante da Teoria das Singularidades, chamado número de Milnor. Tal generalização é o

que chamamos de número de Milnor logarítmico. Bem como explanar sobre de�nições

um pouco mais gerais no contexto de funções construtíveis, apresentando observações,

exemplos e propriedades. Dentre os conceitos que trabalhamos estão também a classe

de Fulton-Johnson, a classe de Schwartz-MacPherson, a classe de Milnor e a classe de

Segre.

Palavras-chave: Número de Milnor; Classe de Milnor; Classe de Segre; Classes ca-

racterísticas; variedades singulares.
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Abstract

The main goal of this thesis is to present a generalization of the important invariant of

the singularity theory, called the Milnor number. Such generalization is what we call the

logarithmic Milnor number. As well as to discuss about more general de�nitions in the

context of constructible functions, presenting observations, examples and properties.

Among the concepts we work on are also the Fulton-Johnson class, the Schwartz-

MacPherson class, the Milnor class and the Segre class.

Keywords: Milnor number; Milnor class; Segre class; Characteristic classes; singular

varieties.
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Introdução

The Milnor's �bration theorem is one of the main tools for the topological study

of the �bers of holomorphic functions near their critical points. Among the information

obtained is a well-known invariant called the Milnor number. The classic de�nition of

this number is purely topological. However, there is an algebraic version of Milnor

number which is given as follows. Consider f : (Cn+1, 0) −→ (C, 0) a germ of holo-

morphic function, with isolated critical point at 0. The Milnor number, denoted by

µ(f), coincides with the number dimCOn+1/(∂f/∂z0, . . . , ∂f/∂zn), where On+1 is the

ring of germs of analytic functions at the origin. Among the generalizations of Milnor

number we highlight Parusi«ski-Milnor number which is de�ned in a context not neces-

sarily with isolated singularity. Let M be a n-dimensional compact complex manifold

and let L be a holomorphic line bundle over M . Consider X := v−1(0) a divisor in

M , where v is a regular holomorphic section of L. The Parusi«ski-Milnor number is

de�ned by

µ(X) = (−1)n−1 (χ(M |L)− χ(X)) ,

where for a vector bundle E over M ,

χ(M |E) :=

∫
M

c(E)−1ctop(E)c(M) ∩ [M ].

In collaboration with P. Pragacz, Parusi«ski presented some interesting properties of

the above number.

Characteristic classes are certain kinds of cohomology classes associated to vector

bundles over spaces. The classic case is when we have a smooth manifold and their

tangent bundle. This theory began in the year 1935 with the works of H. Whitney

and E. Stiefel, arising then Stiefel-Whitney classes. We also have the Pontrjagin and



Euler classes in the real case. In 1946, S.S. Chern de�ned characteristic classes for

complex vector bundles, which are called Chern classes. In a topological approach,

obstruction theory can be used to de�ne Chern classes. However, for a di�erential-

geometric approach, Chern-Weil theory can be used to de�ne Chern classes.

The �rst notions of Chern class for singular varieties appeared in the works of

W.T. Wu and J. Mather. The obstruction approach of Chern classes is due to M.H.

Schwartz, and R. MacPherson presented an axiomatic theory about Chern classes.

Moreover, Macpherson gave a positive answer to the Deligne and Grothendieck's Con-

jecture on the existence of Chern classes seen as a natural transformation from the

covariant functor of the constructible functions to the homology functor with a good

behavior regarding pushforward. The MacPherson's original work was in context of

complex algebraic varieties and on homology groups. For a context completely alge-

braic, by extending to varieties over an arbitrary �eld of characteristic zero, see [Ken];

for a context on Chow groups, see [Ful, 19.1.7]. Using the Alexander duality, one has

that the Schwartz class and the MacPherson class coincide, being so-called Schwartz-

MacPherson classes. The Fulton and Fulton-Johnson classes are other known gene-

ralizations. In the de�nition of these classes another class appears, called the Segre

class. It is known that for complete intersections the Fulton classes and Fulton-Johnson

classes coincide with the Chern class of the virtual bundle.

We can �nd relationship between the Schwartz-MacPherson class and the Fulton-

Johnson class in works of A. Parusi«ski, P. Pragacz, J.P. Brasselet, D. Lehmann, J.

Seade, T. Suwa, S. Yokura and P. Alu�, see [PP3], [BLSS], [Y], [A4]. Motivating to

de�ne the notion of a Milnor class as being the di�erence, up to sign, between the

Schwartz-MacPherson class and the Fulton-Johnson class. Explicitly, let X be a n-

dimensional irreducible analytic (or algebraic) variety embedded in a smooth manifold

M . The Milnor class of X is de�ned by

M(X) = (−1)n−1(cFJ(X)− cSM(X)),

where cFJ(X) denotes the Fulton-Johnson class ofX and cSM(X) denotes the Schwartz-

MacPherson class of X. An interesting fact is that the degree of Milnor class is equals

the Parusi«ski-Milnor number, that is,

µ(X) =

∫
X

M(X).
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We will present some de�nitions that are generalizations of some elements that we have

explained above, as well as some properties and examples. To this end, this thesis was

divided into �ve chapters, which we will describe brie�y.

The Chapter 1 is devoted to some preliminary facts and de�nitions. Among

these facts and de�nitions are the notions of vector �elds with isolated singularities,

Poincaré-Hopf theorem, holomorphic vector bundles, hermitian metric, logarithmic

forms, free divisors, constructible functions and Milnor number. Moreover, we organi-

zed a summary about intersection theory, with de�nitions and results used throughout

subsequent chapters.

In theChapter 2, we begin with a brief explanation of the Schwartz-MacPherson

class and generalize a formula due to Parusi«ski and Pragacz involving the Euler cha-

racteristic. Then we present the de�nition of a logarithmic connection due to P. Deligne

(De�nition 2.2.2). Such a connection is used to extend the de�nition of µ-number due

to Parusi«ski (De�nition 2.2.4). The Theorem 2.2.3 due to Parusi«ski motivated us

to Proposition 2.2.6. Let M be a n-dimensional compact connected complex manifold

and let X := v−1(0) be a divisor in M , where v is a regular holomorphic section of L.

Given D another divisor in M , the logarithmic Milnor number of X with poles along

D or, simply, logarithmic Milnor number of X is de�ned by

µD(X) = (−1)n
(
χ(X;1X\D)−

∫
M

c(L)−1c1(L)c(DerM(−log D)) ∩ [M ]

)
.

In the Proposition 2.2.13 we present the following relationship between logarithmic

Milnor number and Parusi«ski-Milnor number:

µD(X) = µ(X)− (−1)nχ(X;1X∩D) + (−1)n
∫
M

c(L)−1c1(L)c∗(D).

Now we generalize our de�nition of logarithmic Milnor number to an arbitrary cons-

tructible function. We de�ne the Milnor number relative to α as

µ(Y ;α) = (−1)dimY

(∫
M

c(E)−1ctop(E)c∗(α)− χ(Y ;α|Y )

)
where Y is a closed subvariety of M of pure dimension given as zero set of a regular

holomorphic section of a holomorphic vector bundle E over M and α is a constructible

function on M .
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Lastly we present a generalization of Milnor class due to J. Schürmann (De�nition

2.3.4). For a regular embedding ι : X ↪→ Z and α constructible function on Z.

Schürmann de�ned the Milnor class of the pair X ⊂ Z relative to α as

M(X ⊂ Z;α) = (−1)dimX
(
c(NXZ)−1 ∩ ι∗(c∗(α))− c∗(ι∗(α))

)
∈ H∗(X).

Assuming that Z is a smooth variety and X is the zero-scheme of a regular section of

a vector bundle E on Z. We show that

µ(X;α) =

∫
X

M(X;α).

In a natural way, from the Schürmann's de�nition, one de�nes the Fulton-Johnson class

of the pair X ⊂ Z relative to α and the Schwartz-MacPherson class of the pair X ⊂ Z

relative to α.

The Chapter 3 starts with the result due to M. Kwieci«ski (Theorem 3.1.1),

which states the following: Let X and Y be manifolds and let α and β be constructible

functions on X and Y , respectively. Then

c∗(α⊗ β) = c∗(α)× c∗(β).

The Theorem 3.1.1 will be of great use throughout this text. We use the same to show

Proposition 3.1.2 and Proposition 3.1.3. As a consequence of these propositions we

get the Theorem 3.1.4, which generalizes a product formula due to T. Ohmoto and S.

Yokura.

Let M be an n-dimensional compact complex analytic manifold. De�ne M (r) :=

M × · · · ×M . And let Z(t) be the zero set of a regular holomorphic section t of a

holomorphic d-vector bundle E over M (r). Hence, Z(t) is a closed subvariety of M (r)

of dimension nr − d. Consider ∆ : M −→ M (r) the diagonal morphism, which is a

regular embedding of codimension nr−n. The morphism ∆ induces the re�ned Gysin

homomorphism

∆! : H2k(Z(t)) −→ H2(k−nr+n)(Z(∆∗(t))).

The Lemma 3.2.1, due to R. Callejas-Bedregal, M. F. Z. Morgado and J.Seade, is used

in Propositions 3.2.2 and 3.2.3, which are generalizations for constructible functions

of results involving the re�ned Gysin homomorphism above and the Fulton-Johnson
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and Schwartz-MacPherson classes, found in [B-M-S]. And thus, the Proposition 3.2.4,

which states that

∆!(M(Z(t);α)) = (−1)nr−nc
((
TM |Z(∆∗t)

)⊕r−1
)
∩M(Z(∆∗t); ∆∗α),

follows as a consequence of these propositions, where α is a constructible function on

M (r).

Now, for each i = 1, · · · , r, let Ei be a holomorphic vector bundle of rank di over

M and let Xi := s−1
i (0) be a (n− di)-dimensional local complete intersection, where si

is a regular holomorphic section on Ei. Set X := X1∩· · ·∩Xr. Then we generalize, for

constructible functions, some intersection formulas due to R. Callejas-Bedregal, M. F.

Z. Morgado and J.Seade, involving the Fulton-Johnson class, the Schwartz-MacPherson

class and the Milnor class. Explicitly, for α1, · · · , αr constructible functions on M , we

have that

cFJ(X;α) = c
(
(TM |X)⊕r−1

)−1 ∩ cFJ(X1;α1) · . . . · cFJ(Xr;αr),

cSM(X;α) = c
(
(TM |X)⊕r−1

)−1 ∩ cSM(X1;α1) · . . . · cSM(Xr;αr)

and

M(X;α) = (−1)dimXc
(
(TM |X)⊕r−1

)−1 ∩ (cFJ(X1;α1) · · · cFJ(Xr;αr)−

−c∗(X1;α1) · · · c∗(Xr;αr))

where α denotes the constructible function α1 ⊗ · · · ⊗ αr.

In the Chapter 4, we look for a notion for Segre class relative to constructible

functions that had "a good behavior"with the de�nition of Fulton-Johnson class relative

to a constructible function due to Schürmann. This reason is for the following fact. Let

X be a proper closed subscheme of a variety Y . Consider Ỹ the blow-up of Y along

X, X̃ = P (NXY ) the exceptional divisor and η : X̃ −→ X the projection, where NXY

is the normal bundle. The Segre class of X in Y is characterized by

s(X, Y ) =
∑
i≥0

η∗

(
c1 (O(1))i ∩ [P (NXY )]

)
where O(1) is the canonical line bundle on P (NXY ). Suppose that Y = M is non-

singular. The Fulton class of X is de�ned by

cF (X) = c(TM |X) ∩ s(X,M).

5



In this way, motivated by Schürmann's de�nition, we de�ne the Segre class ofX relative

to a constructible function α on M as being

s(X ⊂M ;α) = η∗

(∑
i≥0

c1

(
OP(NXM)(1)

)i ∩ η∗(c(TM |X)−1 ∩ ι∗c∗(α))

)
,

where ι : X ↪→ M is the regular embedding. And we de�ne the Fulton class of X

relative to α as

cF (X ⊂M ;α) = c(TM |X) ∩ s(X ⊂M ;α).

Note that, this de�nition coincides with the de�nition of Fulton-Johnson class relative

to a construtible function due to Schürmann. At long last, we show two results. Pro-

position 4.0.3 is about the Segre class of a product of schemes and Proposition 4.0.5 is

about a pullback of a Segre class.

Finally, the Chapter 5 is dedicated to some auxiliary de�nitions and properties.
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Capítulo 1

Preliminary

1.1 Index of vector �elds

As references we cite [B-S-S] and [M-T].

Let v =
∑m

i=1 fi∂/∂xi be a vector �eld on an open U ⊂ Rm. One says that a

point p ∈ U is a singularity of v if fi(p) = 0 for all i = 1, . . . ,m. The singularity is

isolated if at every point x near p there is at least one component of v which is not

zero. Consider v a continuous vector �eld on U with an isolated singularity at p, and

consider Sε a small sphere in U around p. The Poincaré-Hopf index of v at p, denoted

by Ind(v, p), is de�ned to be the degree of the Gauss map v/||v|| from Sε to the unit

sphere in Rm.

Now let M be an m-dimensional smooth manifold. A vector �eld v on M is

locally expressed as above and one de�nes of the local index at an isolated singularity

extending in the natural way. Note that, this de�nition not depend on the local chart.

The total index of v, denoted by IndMv, is the sum of all its local indices at the singular

points.

Theorem 1.1.1 (Poincaré-Hopf) Let M be a closed oriented manifold and let v be a

continuous vector �eld on M with �nitely many isolated singularities. Then,

IndMv = χ(M)

independently of v, where χ(M) denotes the Euler characteristic of M .



These notions can be extended to sections of a oriented vector bundle as follows.

Let E be an oriented vector bundle over a compact oriented smooth manifold M , and

let π : E −→ M be its projection. Suppose that rank of E is equals to dimM = m.

Consider s0 the zero section of E and s another arbitrary smooth section of E.

De�nition 1.1.2 Let p ∈ M be a zero for s, with s(p) = s0(p). One says that s is

transversal to s0 at p if

Dps(TpM) ∩Dps0(TpM) = 0 (1.1)

and s is called transversal to s0 if this holds for all zeros of s.

Say that s is transversal to s0 at p is equivalent to statement that Dps(TpM) is the

graph of a linear isomorphism A from TpM to the �ber Ep. By assumption, both

vector spaces are oriented. In this way, one de�nes the local index ι(s; p) to be +1 if A

preserves the orientations, and −1 if not. In particular, (1.1) forces p to be an isolated

zero of s. Moreover, if s is transversal to the zero section then the number of zeros of

s is �nite, since M was assumed compact.

Theorem 1.1.3 If s is transverse to the zero section, then

I(e(E)) =
∑
p

ι(s; p)

where the sum runs over the zeros of s, e(E) is the Euler class of E and I : Hm(M) −→
R.

Proof. See [M-T, Theorem 21.9 and Theorem 21.11]. �

As a consequence, for any oriented compact smooth manifoldM , one has I(e(TM)) =

χ(M).

1.2 Holomorphic vector bundles

Let M be a di�erentiable manifold. A C∞ complex vector bundle on M consist

of a family {Ex}x∈M of complex vector spaces, together with a C∞ manifold structure

on E = ∪x∈MEx such that the projection map π : E −→ M taking Ex to x is C∞;

and for every x0 ∈M there is as open set U in M containing x0 and a di�eomorphism

ϕU : π−1(U) −→ U×Cr, called trivialization, taking the vector space Ex isomorphically

onto {x} × Cr for each x ∈ U . The dimension of the �bers Ex of E is called the rank
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of E. A vector bundle of rank 1 is called a line bundle. A section s of the vector

bundle E over U ⊂ M is a C∞ map s : U −→ E such that s(x) ∈ Ex for all x ∈ U .

A frame for E over U ⊂M is a collection s1, . . . , sr of sections of M over U such that

{s1(x), . . . , sr(x)} is a basis for Ex for all x ∈ U .

Now assume that M is a complex manifold. A holomorphic vector bundle π :

E −→M is a complex vector bundle together with the structure of a complex manifold

on E, such that for any x ∈M there is an open set U in M with x ∈ U and a triviali-

zation ϕU : π−1(U) −→ U ×Cr which is a biholomorphism map of complex manifolds.

A section s of the holomorphic bundle E over U ⊂ M is said to be holomorphic if

s : U −→ E is a holomorphic map. A frame s = s1, . . . , sr is called holomorphic if each

si is a holomorphic map. A hermitian metric on M is de�ned as a positive de�nite

hermitian inner product

( , )z : T ′zM ⊗ T ′zM −→ C

where T ′zM denotes the holomorphic tangent space at z for each z ∈M , depending smo-

othly on z, that is, for local coordinates z on M the functions hij(z) = (∂/∂zi, ∂/∂zj)

are C∞.

1.3 Logarithmic forms and free divisors

Let U be a domain of Cn, and let D ⊆ U be a divisor of U de�ned by an equation

h(z) = 0, where h is holomorphic on U . A meromorphic q-form ω on U is called a

q-form with logarithmic pole along D or logarithmic q-form (along D) if it satis�es the

following equivalent conditions:

(a) hω and hdω are holomorphic on U .

(b) hω and dh ∧ ω are holomorphic on U .

(c) There exists a holomorphic function g(z), a holomorphic (q − 1)-form ξ and a

holomorphic q-form η on U , such that

• dimCD ∩ {z ∈ U : g(z) = 0} ≤ n− 2,

• gω =
dh

h
∧ ξ + η.

9



(d) There exists an (n − 2)-dimensional analytic set A ⊂ D such that the germ of

ω at any point p ∈ D\A belongs to
dh

h
∧ Ωq−1

U,p + Ωq
U,p, where Ωq

U,p denotes the

module of germs of holomorphic q-forms on U at p.

Let S an n-dimensional complex manifold and D be a divisor of D. Consider

hp = 0 a reduced equation for D, locally at p ∈ D. A meromorphic q-form ω is

logarithmic along D at p if hpω and hpdω are holomorphic. We denote Ωq
S,p(logD) :=

{germ of logarithmic q-form at p} and Ωq
S(logD) :=

⋃
p∈S Ωq

S,p(logD).

De�nition 1.3.1 Let S an n-dimensional complex manifold and D be a divisor of D.

Consider hp = 0 a reduced equation for D, locally at p ∈ D. A holomorphic vector �eld

δ on S is logarithmic if it satis�es the following equivalent conditions:

(a) For any smooth point p ∈ D, the tangent vector δ(p) of p is tangent to D,

(b) For any point p ∈ D, the derivation δhp of the local equation for D belongs to the

ideal (hp)OS,p.

We denote DerS,p(logD) := {δ :germ of a holomorphic vector �eld on S at p such

that δ(hp) ∈ (hp)} and DerS(logD) :=
⋃
p∈S DerS,p(logD). Note that, DerS(logD) is

a coherent OS-submodule of DerS, where DerS is a sheaf of holomorphic vector �elds

on S.

De�nition 1.3.2 Let D be a divisor in S and let p ∈ D, we say that D is a free divisor

in p if Ω1
S,p(logD) (or its dual DerS,p(logD)) is a OS,p-free module. Moreover, we say

that D is a free divisor if Ω1
S,p′(logD) (or its dual DerS,p′(logD)) is a OS,p′-free module

for all p′ ∈ D.

1.4 Constructible functions

The references are [Scha] and [K-S].

Let X be a real analytic manifold. A function α : X −→ Z is called constructible

if for each m ∈ Z, the set α−1(m) is subanalytic and the family {α−1(m)}m∈Z is locally

�nite, or equivalent, by triangulation theorem, if there exists a locally �nite covering

X =
⋃
i∈I Xi and

α =
∑

mi1Xi

where mi are integers, Xi are (closed) analytic subset of X and 1Xi
is the characteristic

functions of Xi. The set of all constructible functions on X, denoted by CF (X),

10



is endowed with a structure of algebra. If α has support compact, then all Xi are

compacts. Thus one de�nes the Weighted Euler characteristic of α as been

χ(X;α) =
∑
i

miχ(Xi),

where χ is the topological Euler characteristic. Now, let f : X −→ Y be a morphism

of analytic manifolds. Given β a constructible function on Y , one de�nes the inverse

image, or pullback, of β by f as been the constructible function f ∗β on X de�ned by

f ∗β(x) = β(f(x)), for all x ∈ X. Assume that f : X −→ Y is proper morphism on the

support of a constructible function α on X, one de�nes the direct image, or pushfoward,

as been the constructible function f∗α on Y de�ned by

f∗(α)(y) = χ(f−1(y);α|f−1(y)),

for all y ∈ Y . Note that, given a analytic subset W of X, the characteristic function

1W is constructible.

1.5 Intersection theory

The references are [Ful] and [H].

1.5.1 Algebraic Schemes

We say that a scheme X is algebraic over a �eld K if there is a morphism of �nite

type from X to Spec(K). This means that, X has a �nite covering by a�ne sets whose

coordinate rings are �nitely generated K-algebras. We denote the coordinate ring of

an a�ne open U by A(U). However, the word scheme means an algebraic scheme over

some �eld. A closed subscheme Y of a scheme X is de�ned by an ideal sheaf I(Y ) in

the structure sheaf OX of X.

A variety is a reduced and irreducible (integral) algebraic scheme. A subvariety

V of a scheme X is a reduced and irreducible closed subscheme of X. One has that

a subvariety V corresponds to a prime ideal in the coordinate ring of any a�ne open

set meeting V . The local ring of X along V , denoted by OV,X , is the localization of

such a coordinate ring at the corresponding prime ideal; its maximal ideal is denoted

byMV,X . The function �eld of V , denoted by R(V ), is the residue �eld OV,X/MV,X .
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The dimension of a scheme X, denoted by dimX, is the maximum length n of a

chain

∅ $ V0 $ V1 $ . . . $ Vn ⊂ X

of subvarieties of X. A scheme X is pure dimensional if all irreducible components of

X have the same dimension. A point on a scheme X is a 0-dimensional subvariety of

X. We say that a point p of X is regular if Op,X is a regular local ring. The open set

of regular points in X is denoted by Xreg.

The a�ne n-space, denoted by An, is the a�ne variety whose coordinate ring

is the polynomial ring K[x1, · · · , xn]. The subscheme of An de�ned by an ideal I =

(f1, · · · , fn) in K[x1, · · · , xn] is denoted by V (I).

A morphism f : X −→ Y of algebraic schemes is assumed to be compatible

with the structure morphism to Spec(K), where K is the ground �eld. If f maps an

a�ne open subset U ′ of X into an a�ne open subset U of Y , then f corresponds to a

homomorphism f ∗ : A(U) −→ A(U ′) of K-algebras.

Let f : X −→ S and g : Y −→ S be morphisms. The �bre product of X and

Y over S, denoted by X ×S Y , comes equipped with projections p : X ×S Y −→ X

and q : X ×S Y −→ Y which satisfy the following universal property: for any scheme

Z with morphisms u : Z −→ X and v : Z −→ Y such that f ◦ u = g ◦ v, there is a

unique morphism (u, v) : Z −→ X ×S Y such that p ◦ (u, v) = u and q ◦ (u, v) = v. A

commutative square of morphism

X ×S Y
q //

p

��

Y

g

��
X

f
// S

is called a �bre square. In a �bre diagram, all squares appearing in the diagram are

required to be �bre squares. When S = Spec(K), where K is the ground �eld, it is

called Cartesian product of X and Y , denotes X × Y in place of X ×S Y .

A morphism f : X −→ Y is separated if the diagonal morphism from X to

X ×Y X is a closed imbedding. We say that a morphism f : X −→ Y is proper if it

is separated, and universally closed, i.e., for all Y ′ −→ Y , the induced morphism from

X ×Y Y ′ to Y ′ takes closed sets to closed sets. A scheme is complete if the structural

morphism to Spec(K) is proper.
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A morphism f : X −→ Y is �at if for U ⊂ Y , U ′ ⊂ X a�ne open sets with

f(U ′) ⊂ U , the induced map f ∗ : A(U) −→ A(U ′) makes A(U ′) a �at A(U)-module.

A morphism f : X −→ Y has relative dimension n if for all subvarieties V of Y ,

and all irreducible components V ′ of f−1(V ), dimV ′ = dimV + n. A morphism

f : X −→ Y is called smooth if f is �at of some relative dimension n, and the sheaf

of relative di�erentials Ω1
X/Y is a locally free sheaf of rank n. We say that a scheme X

is nonsingular, or smooth, if it is smooth over Spec(K). If f : X −→ Y is smooth of

relative dimension n, the relative tangent bundle, denoted by TX/Y , is the vector whose

sheaf of sections is the dual bundle to Ω1
X/Y . When Y = Spec(K), denotes TX in place

of TX/Y .

Let X be a scheme. A scheme E equipped with a morphism π : E −→ X is called

a vector bundle of rank r onX if there are an open covering {Ui} ofX and isomorphisms

Φi of π−1(Ui) with Ui ×Ar over Ui, such that over Ui ∩ Uj the composites ϕi ◦ ϕ−1
j are

linear. A section of E is a morphism s : X −→ E such that π ◦ s = idX . Several basic

operations are de�ned for vector bundles, compatibly with the corresponding notions

for sheaves: direct sum E⊕F , tensor product E⊗F , exterior product
∧iE, symmetric

product SymiE, dual bundle E∨, pull-back f ∗E for a morphism f : X ′ −→ X. If E is

a vector bundle of rank n on X, then its sheaf of sections of E is a locally free sheaf E

of OX-modules of rank r. Conversely, for any locally free coherent sheaf E of rank n on

X, one can produce a vector bundle E = Spec(Sym(E∨)). The trivial bundle of rank

one on X is often denoted by 1. Lastly, a line bundle is a vector bundle L of rank one.

Let X be a closed subscheme of a scheme Y , de�ned by an ideal sheaf I.

The blow-up of Y along X, denoted by BlXY , is the projective cone over Y of

the sheaf of OY -algebras
⊕

n≥0 In, that is, BlXY = Proj
(⊕

n≥0 In
)
. Let us de-

note Ỹ = BlXY and π the projection from Ỹ to Y . The canonical invertible sheaf

O(1) on the projective cone Ỹ is the ideal sheaf of π−1(X), which is a Cartier di-

visor on Ỹ , called the exceptional divisor. Let X̃ = π−1(X). Note that, one has

X̃ =Proj
((⊕

n≥0 In
)
⊗OY

OX
)

=Proj
(⊕

n≥0 In/In+1
)
, which is the projective normal

cone to X in Y , denoted by P (CXY ).
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1.5.2 Rational Equivalence

Let X be an algebraic scheme. A k-cycle on X is a �nite sum
∑
ni[Vi], where

the Vi are k-dimensional subvarieties of X and the ni are integers. Tho free abelian

broup on the k-dimensional subvarieties of X is called group of k-cycles on X, which

we denote by ZkX. Consider a (k+1)-dimensional subvarietyW of X and r ∈ R(W )∗.

Choose f and g in OV,W such that r = f/g. The order of r along V is de�ned by

ordV (r) = l(OV,W/(f))− l(OV,W/(g)).

De�ne a k-cycle [div(r)] on X by [div(r)] =
∑

ordV (r)[V ], the sum runs over all

codimension one subvarieties V of W . Moreover, a k-cycle α is rationally equivalent to

zero, denoted by α ∼ 0, if there are a �nite number of (k+ 1)-dimensional subvarieties

Wi of X and ri ∈ R(W )∗ such that α =
∑

[div(ri)]. One denotes by Ratk(X) the group

of The cycles rationally equivalent to zero form a subgroup Ratk(X) of Zk(X). The

group of k-cycles modulo rational equivalence on X is given by

AkX = ZkX/RatkX.

Let f : X −→ Y be a proper mor�sm. Given any subvariety V of X, the image

W = f(V ) is a (closed) subvariety of X. It is known that if W has the same dimension

as V then the induced imbedding of R(W ) in R(V ) is a �nite �eld extension. Set

deg(V/W ) =

 [R(V ) : R(W )] if dimW = V

0 if dimW < dimV,

where [R(V ) : R(W )] denotes the degree of the �eld extension. We de�ne f∗([V ]) =

deg(V/W )[W ]. We can extend linearly to a homomorphism f∗ : ZkX −→ ZkY .

Theorem 1.5.1 Let f : X −→ Y be a proper morphism and let α be a k-cycle on X,

such that α is rationally equivalent to zero. Then f ∗α is rationally equivalent to zero

on Y . Therefore, there exists an induced homomorphism

f∗ : AkX −→ AkY.

So the A∗ is a covariant functor for proper morphisms.

Proof. See [Ful, Theorem 1.4]. �

Suppose that X is complete, that is, X is proper over S = Spec(K), with K

being the ground �eld. Consider α =
∑

P nP [P ] a zero-cycle on X.
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De�nition 1.5.2 The degree of α, denoted deg(α), or
∫
X
α, is de�ned by

deg(α) =

∫
X

α =
∑
P

nP [R(P ) : K].

Equivalently, deg(α) = p∗(α), where p is the structure morphism from X to S, and

A0S = Z[S] is identi�ed with Z. One can extend the degree homomorphism to all of

A∗X =
⊕dimX

k=0 AkX, ∫
X

: A∗X −→ Z

with
∫
X
α = 0 if α ∈ A∗X, k > 0. Now, for any morphism f : X −→ Y of complete

schemes, and any α ∈ A∗X, ∫
X

α =

∫
Y

f∗(α).

Now, let X be any scheme and let X1, · · ·Xr be the irreducible components of

X. Note that, the local rings OXi,X are all zero-dimensional. We de�ne the geometric

multiplicity mi of Xi in X as being the length of OXi,X , that is, mi = lOXi,X
(OXi,X).

The fundamental cycle [X] of X is the cycle

[X] =
r∑
i=1

mi[Xi].

Let f : X −→ Y be a �at morphism of relative dimension n. For any subvariety

V of Y , set f ∗[V ] = [f−1(V )], where f−1(V ) is the inverse image scheme, which is a

subscheme of X of pure dimension dim(V )+n. By linearity, we can extend to pull-back

homomorphisms

f ∗ : ZkY −→ Zk+nX.

Theorem 1.5.3 Let f : X −→ Y be a �at morphism of relative dimension n and

let α be a k-cycle on Y wich is rationally equivalent to zero. Then f ∗α is rationally

equivalent to zero in Zk+nX.

Proof. See [Ful, Theorem 1.7]. �

Consider X and Y two algebraic schemes over a �eld. Denote by X × Y the

Cartesian (�ber) product of X and Y over the ground �eld. The exterior product

ZkX ⊗ ZlY
×−→ Zk+l(X × Y )

is de�ned by the formula [V ]× [W ] = [V ×W ], for V,W subvarieties of X, Y , respec-

tively; and extending bilinearly to general cycles.
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Proposition 1.5.4 (a) If α ∼ 0 or β ∼ 0, then α× β ∼ 0.

(b) Let f : X ′ −→ X, g : Y ′ −→ Y be morphisms between algebraic schemes over a

�eld. Denote by f × g the induced morphism from X ′ × Y ′ to X × Y .

(i) If f and g are proper, then f × g is proper, and

(f × g)∗(α× β) = f∗α× g∗β

for all cycles α ∈ X ′ and β ∈ Y ′.

(ii) If f and g are �at of relative dimensions m and n, respectively, then f × g
is �at of relative dimension m+ n, and

(f × g)∗(α× β) = f ∗α× g∗β

for all cycles α ∈ X ′ and β ∈ Y ′.

Proof. See [Ful, Proposition 1.10]. �

Consequently, there are exterior products

AkX ⊗ AlY
×−→ Ak+l(X × Y ).

1.5.3 Gysin map for divisors

Let D be an e�ective Cartier divisor on a scheme X and i : D −→ X be the

inclusion. There are Gysin homomorphisms

i∗ : ZkX −→ Ak−1D

given by i∗(α) = D · α, where D · α is the intersection class in Ak−1D.

Proposition 1.5.5 (a) If α is rationally equivalent to zero on X, then i∗α = 0.

Thus, there are induced homomorphisms

i∗ : AkX −→ Ak−1D.

(b) If α is a k-cycle on X, then

i∗i
∗(α) = c1(OX(D)) ∩ α.

(c) If α is a k-cycle on D, then

i∗i
∗(α) = c1(i∗OX(D)) ∩ α.
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(d) If X is purely n-dimensional, then

i∗[X] = [D] ∈ An−1D.

(e) If L is a line bundle on X and α is a k-cycle on X, then

i∗(c1(L) ∩ α) = c1(i∗L) ∩ i∗(α) ∈ Ak−2D.

Proof. See [Ful, Proposition 2.6]. �

1.5.4 Chern classes

Let E be a vector bundle on X of rank r. We de�ne Segre class operators si(E),

si(E) ∩_ : Ak(X) −→ Ak−i(X)

as follow. Consider p : P(E) −→ X the projective bundle of E, OE(1) the canonical

line bundle on P(E), and α in AkX. Set

si(E) ∩ α = p∗(c1(OE(1))r−1+i ∩ p∗α).

where p∗ is �at

Note that si(E) = 0 for i < 0 and s0(E) = 1. We de�ne Chern class operators

ci(E) ∩_ : Ak(X) −→ Ak−i(X)

formally by 1 + c1(E) + c2(E) + · · · = (1 + s1(E) + s2(E) + · · · )−1. Explicity,

c0(E) = 1, c1(E) = −s1(E)

c2(E) = s2(E)2 − s1(E), · · ·

cn(E) = −s1(E)cn−1(E)− s2(E)cn−2(E)− · · · − sn(E).

The total Chern class of E is the sum

c(E) := 1 + c1(E) + · · ·+ cr(E).

Theorem 1.5.6 We have that:

(a) (Vanishing) For all vector bundles E on X, all i > rank(E),

ci(E) = 0.
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(b) (Commutativity) For all vector bundles E,F on X, integers i, j, and cycles α on

X,

ci(E) ∩ (cj(F ) ∩ α) = cj(F ) ∩ (ci(E) ∩ α).

(c) (Projection formula) Let E be a vector bundle on X and let f : X ′ −→ X be a

proper morphism. For all cycles α on X ′, and integers i, we have

f∗(ci(f
∗E) ∩ α) = ci(E) ∩ f∗(α).

(d) (Pull-back) Let E be a vector bundle on X and let f : X ′ −→ X be a �at

morphism. For all cycles α on X ′, and integers i, we have

ci(f
∗E) ∩ f ∗α = f ∗(ci(E) ∩ α).

(e) (Whitney sum) For any exact sequence

0 −→ E ′ −→ E −→ E ′′ −→ 0

of vector bundles on X, we have

c(E) = c(E ′) · c(E ′′),

that is

ck(E) =
∑
i+j=k

ci(E
′)cj(E

′′).

(f) (Normalization) Let L be a line bundle on X and let D be a Cartier divisor on

X with O(D) ∼= L. Then

c1(L) ∩ [X] = [D].

Proof. See [Ful, Theorem 3.2]. �

1.5.5 Re�ned Gysin homomorphisms

Let i : X −→ Y be a regular imbedding of codimension d, and let f : Y ′ −→ Y

be a morphism. Form the �bre square

X ′
j //

g

��

Y ′

f
��

X
i
// Y

Now, we de�ne homomorphisms i! : ZkY
′ −→ Ak−dX

′ given by i! (
∑
ni[Vi]) =

∑
niX ·

Vi, where X · Vi is the intersection product. The induced homomorphisms

i! : AkY
′ −→ Ak−dX

′

is called re�ned Gysin homomorphism.
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Theorem 1.5.7 Consider a �bre diagram

X ′′ i′′ //

q
��

Y ′′

p
��

X ′
i′ //

g

��

Y ′

f
��

X
i
// Y

where i is a regular imbedding of codimension d.

(a) (Push-forward) If p is proper, α ∈ AkY ′′, then

i!p∗(α) = q∗(i
!α)

in Ak−dX
′.

(b) (Pull-back) If p is �at of relative dimension n, and α ∈ AkY ′, then

i!p∗(α) = q∗(i!α)

in Ak+n−dX
′′.

(c) (compatibility) Let α be another regular imbedding of codimension d. If α ∈
AkY

′′, then

i!α = i′!α

in Ak−dX
′′.

Proof. See [Ful, Theorem 6.2]. �

Proposition 1.5.8 Let i : X −→ Y be a regular imbedding of codimension d,

X ′
i′ //

��

Y ′

��
X

i
// Y

a �bre square, and let F be a vector bundle on Y ′. Then, for all α ∈ Ak(Y ′), and all

m = 0,

i!(cm(F ) ∩ α) = cm(i′∗F ) ∩ i!(α)

in Ak−d−m(X ′).

Proof. See [Ful, Proposition 6.3]. �
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Example 1.5.9 [Ful, Example 6.3.4] Consider E a vector bundle of rank r on a scheme

Y and consider s a regular section of E. Then, the inclusion ι of the zero-scheme

X = Z(s) in Y is a regular imbedding of codimension r and NXY is the restriction of

E to X. If f : Y ′ −→ Y is a morphism, form the �bre square

X ′
j //

g

��

Y ′

f
��

X ι
// Y

Then

j∗i
!(α) = cr(f

∗E) ∩ α

for all α ∈ A∗Y ′.

Example 1.5.10 Let ij : Xj −→ Yj be regular imbedding of codimensions dj, j =

1, . . . , r. Let fj : Y ′j −→ Yj be morphisms, αj ∈ Aki(Y ′j ). Then i1× . . .× ir is a regular

imbedding of X1 × . . .×Xr in Y1 × . . .× Yr, of codimension
∑
di, and

(i1 × · · · × ir)!(α1 × · · · × αr) = i1
!(α1)× · · · × ir !(αr)

in A∑
(kj−dj)(X

′
1 × . . .×X ′r), with X ′i = Xi ×Yi Y ′i .

Example 1.5.11 Consider X, Y schemes, p and q the projections from X × Y to X

and Y and E and F vector bundles on X and Y . Given α ∈ A∗X and β ∈ A∗Y , one
has

(ci(E) ∩ α)× β = ci(p
∗E) ∩ (α× β)

and

(c(E) ∩ α)× (c(F ) ∩ β) = c(p∗E ⊕ q∗F ) ∩ (α× β).

1.5.6 Segre Classes

Let C be a cone over a scheme X, that is, C = Spec(S•), where S• is a sheaf

of graded OX-algebras. Let us assume OX −→ S0 is surjective, S1 is coherent and S•

is generated by S1. For a variable z, denote by S•[z] the graded algebra whose nth

graded peace is Sn ⊕ Sn−1z ⊕ · · · ⊕ S1zn−1 ⊕ S0zn. Let P (C ⊕ 1) = Proj(S•[z]) be the

projective completion of C, with projection q : P (C ⊕ 1) −→ X, and let O(1) be the

canonical line bundle on P (C ⊕ 1). The Segre class of C, denoted by s(C), is the class

in A∗X de�ned by the formula

s(C) = q∗

(∑
i≥0

c1 (O(1))i ∩ [P (C ⊕ 1)]

)
.
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If E is a vector bundle on X, one has s(E) = c(E)−1∩ [X] see [Ful, Proposition 4.1(a)].

Now suppose X can be a closed subscheme of a scheme Y . Let CXY =

Spec (
∑∞

n=0 In/In+1) be the normal cone to X in Y . The Segre class of X in Y ,

denoted by s(X, Y ), is de�ned to be the Segre class of the normal cone CXY , that is,

s(X, Y ) = s(CXY ) ∈ A∗X.

If X is regularly imbedded in Y , it follow that the normal cone is a vector bundle on

X, and consequently, s(X, Y ) is the cap product of the total inverse Chern class of the

normal bundle with [X].

Proposition 1.5.12 Let X be a proper closed subscheme of a variety Y . Consider

Ỹ the blow-up of Y along X, X̃ = P (C) the exceptional divisor, η : X̃ −→ X the

projection. Then

s(X, Y ) =
∑
i≥0

η∗

(
c1 (O(1))i ∩ [P (C)]

)
.

Consider F a coherent sheaf on a sheme X and consider P (F) = Proj(Sym(F)),

with projection p : P (F) −→ X. Denote by OF(1) the canonical invertible sheaf which

is the universal quotient of p∗(F). If the support of F is X, one de�nes its Segre class

s(F) in A∗(X) by the formula

s(F) = p∗

(∑
i≥0

c1 (OF(1))r ∩ [P (F)]

)
= p∗

(
c (OF(1))−1 ∩ [P (F)]

)
.

1.6 Milnor number

Consider f : (Cn+1, 0) −→ (C, 0) a germ of holomorphic function. Set Z to the

complex hypersurface given by the zero set of f . One says that Z is singular at 0 if the

di�erential of f vanishes at 0, that is, the vector �eld (∂f/∂z0, · · · , ∂f/∂zn) vanishes

at 0. One says that 0 is an isolated singularity of Z if there is an open neibourhood U

of 0 such that U\{0} is non-singular, that is, 0 is the only point in U that the vector

�eld (∂f/∂z0, · · · , ∂f/∂zn) vanishes. It is known that, 0 is an isolated singularity of

Z if and only if the quociente algebra On+1/(∂f/∂z0, . . . , ∂f/∂zn) is a C-vector space

of �nite complex dimesion, see [L, Proposition 1.2]. Moreover, if 0 is an isolated

singularity of Z, the index of the vector �eld (∂f/∂z0, . . . , ∂f/∂zn) coincides with the
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number dimCOn+1/(∂f/∂z0, . . . , ∂f/∂zn). The standard example is Pham-Brieskorn

polynomial f(z0, . . . , zn) = za00 + · · · + zann , with an > 1. Note that Z = f−1(0) is a

complex hypersurface with an isolated singularity at 0.

Suppose that 0 is an isolated singularity of Z. For a ε small enough, the sphere

Sε = {z ∈ Cn+1 | |z| = ε} intersects transversally Z, see [Milnor, Corollary 2.9]. The

smooth manifold K := Sε ∩ Z is called the link of the singularity of Z at 0, and its

di�eomorphism type does not depend on ε.

Let us see below the classic Milnor's �bration theorem.

Theorem 1.6.1 [Milnor, Theorem 4.8] There is ε1 > 0 such that, for all ε with ε1 >

ε > 0, the map

ϕε =
f

|f |
: Sε\K −→ S1

is a locally trivial smooth �bration.

For ε1 > ε > 0, all the �brations ϕε are di�eomorphic. Now let Bε(0) be the open

ball of Cn+1 centered at 0 with radius ε and let ∂Dη be the boundary of the closed

disc Dη of C centered at 0 with radius η. Using the Ehresmann's �bration lemma

on manifolds with boundary or the Thom's �rst isotopy lemma, one has the following

alternative shape:

Theorem 1.6.2 (Milnor-Lê �bration theorem) There is ε0 > 0 such that, for all ε

with 0 < ε ≤ ε0, there is η > 0 such that, for all η with 0 < η ≤ ηε. The map f induces

a locally trivial smooth �bration ψε,η : Bε(0) ∩ f−1(∂Dη) −→ ∂Dη.

For small enough ε > 0 and η > 0, ϕε and ψε,η are di�eomorphic. Thus, ϕε is called

Milnor �bration of f at 0. If f has an isolated singularity at 0, then each �ber of the

Milnor �bration has the homotopy type of a bouquet Sn ∨ . . . ∨ Sn of n-spheres, see

[Milnor, Theorem 6.5]. The number of spheres in this bouquet is called the Milnor

number of f and is denoted by µ(f). Moreover, the Milnor number µ(f) coincides

with the number dimCOn+1/(∂f/∂z0, . . . , ∂f/∂zn). In this way, assuming that f has

an isolated singularity at 0, the Milnor number may be algebraically calculated.

There are some relevant generalizations to Milnor number. In 1971, H. Hamm

extended the Milnor's �bration theorem for ICIS. The Lê number was introduced by

David Massey, such numbers extend the notion of Milnor number to a setup of singula-

rities not necessarily isolated. In 1988, Adam Parusi«ski presented a global de�nition

for Milnor number, we will see in more detail in the next chapter.
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1.7 Borel-Moore homology

The following is a brief explanation of the homology with locally �nite supports,

also known as Borel-Moore homology. We use as references [Ful] and [Ful2].

Let X be a topological space imbedded as a closed subspace of Rn. One may

de�ne the Borel-Moore homology groups HiX by

HiX ∼= Hn−i(Rn,Rn\X)

where the group on the right is the relative singular cohomology with integer coe�-

cients. More generally, if X is a closed subspace of a topological space Y , there are

cap products Hj(Y n, Y n\X)⊗HkY
∩−→ Hk−jX. Now assuming that Y is an oriented

connected real n-manifold, one has that HnY is freely generated by a fundamental

class µY , and capping µY with determines an isomorphism Hn−i(Y n, Y n\X)
∩µY−→ HiX.

In particular, when X = Y one has the Poincaré duality, that is, the isomorphism

Hn−iY ∼= HiY .

For any n-dimensional complex scheme X, we have HiX = 0 for all i > 2n, and

H2nX is a free abelian group with one generator for each irreducible component of X.

Thus, the generator of H2nX corresponding to an n-dimensional irreducible component

Xi, which we denote by cl(Xi). More generally, if V is a k-dimensional closed subvariety

of X, de�ne the cycle class by clX(V ) = i∗cl(V ) ∈ H2kX, where i is the inclusion of V

in X. We may consider the homomorphism cl : ZkX −→ H2kX from the algebraic k-

cycles to the Borel-Moore homology, which takes
∑
ni[Vi] to

∑
niclX(Vi). This induces

a homomorphism cl : A∗X −→ H∗X, the so-called cycle map. The cycle map has

interesting properties such as being covariant for proper morphisms, and compatible

with Chern classes of vector bundles.

1.8 Schwartz-MacPherson class

Let X be a n-dimensional irreducible analytic (or algebraic) variety embedded

in a smooth manifold M . Over the smooth part Xreg of X, the tangent bundle of X

de�nes a section of the Grassmannian bundle Gn(TM). We de�ne the Nash blowup of

X as been ν : X̃ −→ X , where X̃ is the closure of the image of this section and ν is

the restriction of the projection on X. The restriction of the tautological bundle over
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Gn(TM) is denoted by T̃ or T̃X . One should notice that, X̃, T̃ and ν are analytically

independents of the embedding chosen since, near each point, X has a unique minimal

local analytic embedding. We have that T̃ |ν−1(Xreg) is isomorphic to ν∗T (Xreg). We

de�ne the Chern-Mather class of X as been the element of the Borel-Moore homology

H∗(X) given as

cM = ν∗(c(T̃ ) ∩ [X̃]),

where [X̃] is the fundamental class of X̃. An analytic cycle on a variety X is an element

of free abelian group whose basis consists of all irreducible subvarieties of X. Given

an analytic cycle
∑
niXi on a variety X, with ni are integers and Xi are irreducible

subvarieties of X, one de�nes

cM

(∑
niXi

)
:=
∑

ni (incli)∗ cMa(Xi),

where incli is the inclusion ofXi inX. Note that, ifX is smooth, then cMa = c(TX)∩[X]

is the total Chern class of X, where TX is the tangent bundle of X.

Deligne and Grothendieck conjectured on the existence of a natural transforma-

tion between the functor CF , which assigns to each variety its group of constructible

functions and the functor H∗ of some homology theory such as Borel-Moore homology

or rational equivalence theory, such that assigns the characteristic function of a non-

singular variety to the Poincaré dual of the its total Chern class. In [Mac], Robert

D. Macpherson responded a�rmatively to the Deligne and Grothendieck's conjecture.

Macpherson de�ned, transcendentally, the local Euler obstruction EuX(x) of X at

x ∈ X. However, there exists an equivalent algebraic de�nition to the local Euler

obstruction of X at x given by

EuX(x) =

∫
X

c(TX) ∩ s(ν−1(x), X̃),

where ν : X̃ −→ X is the Nash blowup ofX, TX is the Nash tangent bundle ofX and s

denotes the Segre class, see [Ful, Chapter 4]. For this de�nition was used as motivation

the formula of Gonzalez-Sprinberg and Verdier, see [G-S]. Now for each V irreducible

subvariety of X, the functions EuV (−) on X, de�ned as EuV (x) for all x ∈ V and zero

otherwise, are constructible, see [Mac] and [Ken]. MacPherson using the local Euler

obstruction de�ned an isomorphism T from free abelian group of analytic cycles on X
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to the additive group of constructible functions on X by

T
(∑

miVi

)
=
∑

niEuVi(−).

We de�ne the MacPherson class of X as been the element in H∗(X) given by

c∗(X) := cM(T−1(1X)).

Thus, there exists a natural tranformation c∗ : CF −→ H∗, such that if X is smooth

then c∗(X) = c(TX)∩ [X] ∈ H∗(X), where TX is the tangent bundle of X. In this way,

if f : X −→ Y is a proper morphism of analytic varieties then the following diagram

commutes
CF (X)

c∗ //

f∗
��

H∗(X)

f∗
��

CF (Y ) c∗
// H∗(Y )

this is, f∗(c∗(α)) = c∗(f∗(α)), for all α ∈ CF (X). Furthermore, for a compact analytic

varietyX, we have the a generalization of Gauss-Bonnet theorem to the singular setting

χ(X) =

∫
X

c∗(X). (1.2)

More generally, given a constructible function α on X, consider the constant function

ρ : X −→ {p0}. Then, ρ∗α(p0) = χ(X;α), and thus,∫
X

c∗(α) =

∫
{p0}

ρ∗c∗(α) =

∫
{p0}

c∗(ρ∗α) =

∫
{p0}

c∗(χ(X;α)1p0) = χ(X;α).

In particular, if α = 1X we have the equation (1.2).

In the 1960s, Marie-Hélène Schwartz de�ned a generalization of Chern classes

to singular varieties, a work independently using obstruction theory and radial vector

�elds. In [B-S], J. P. Brasselet and M.-H. Schwartz showed that if X is a compact

complex variety then, by Alexander isomorphism, the MacPherson class of X coincides

with the Schwartz class of X. Therefore, the class c∗(X) is known as the Schwartz-

MacPherson class of X, also denotes by cSM(X).

Let S be a Whitney strati�cation of X and let E be a holomorphic vector bundle

on X. Consider a holomorphic section s of E such that s intersects, on each stratum

of S, the zero section of E transversely. Consider Z = s−1(0) and ι : Z −→ X the

inclusion.
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Capítulo 2

Logarithmic Milnor number and some

generalizations

In this chapter we will use the concept of logarithmic connection to generalize

the Milnor number to a logarithmic setup. For this, let us review the approach on

connections in the classical sense.

2.1 The logarithmic Milnor number

The main references in this section are [G-H] and [P].

Let E → M be a holomorphic k-vector bundle on a n-dimensional complex

manifold M . A connection π on E is a C-linear map

π : Γ(E)→ Ω1(M)⊗ Γ(E)

satisfying Leibnitz' rule

π(gs) = d(g)⊗ s+ gπ(s)

where g : M → C is a holomorphic function and s ∈ Γ(E). Let s = s1, ..., sn : U → E

be a frame, where U is open subset inM . Given a connection π on E, we can decompose

π(si) into its components, writing

π(si) =
n∑
j=1

θijsj.

The matrix θ = (θij) of 1-forms is called the connection matrix of π with repect to s.



Now, we assume thatM is complex and E is hermitian. Since Ω1(M) = Ω1,0(M)⊕

Ω0,1(M), we can write π = π′+π′′, where π′ : Γ(E)→ Ω1,0(M)⊗Γ(E) and π′′ : Γ(E)→

Ω0,1(M) ⊗ Γ(E). We say that a connection π on E is compatible with the complex

structure if π′′ = ∂. Moreover, if E is hermitian, the connection π is said to be

compatible with the metric if

d(ξ, η) = (π(ξ), η) + (ξ, π(η))

for all ξ, η ∈ Γ(E). The existence and uniqueness of a connection that satis�es the

above conditions is something that is answered in the result below.

Proposition 2.1.1 Given a hermitian vector bundle E on M , there is a unique con-

nection on E compatible with both the metric and the complex structure.

Proof. See [G-H, Page 73] or [Huy, Proposition 4.2.14]. �

The unique connection compatible with the metric and the complex structures on E is

called metric connection or Chern connection. Note that the metric connection depends

on the hermitian structure adopted for E.

For our goals, we will need a more general type of connection, the so-called loga-

rithmic connection with poles along some divisor. Such a concept was �rst introduced

by Pierre Deligne, in [Deligne].

De�nition 2.1.2 Let E → M be a holomorphic vector bundle of rank k on a n-

dimensional complex manifold M , and let D be a divisor (hypersurface) in M . A

connection with logarithmic poles along D or, simply, logarithmic connection on E is

a C-linear map

∇ : Γ(E)→ Ω1
M(logD)⊗ Γ(E)

satisfying

∇(gs) = d(g)⊗ s+ g∇(s)

where g : M → C is a holomorphic function and s ∈ Γ(E).

Consider s = s1, . . . , sk : U → E a frame, where U is an open subset of M .

Given ω ∈ (Ω1
M(logD) ⊗ Γ(E))(U), can be written uniquely as

∑
ωi ⊗ si, with ωi ∈

Ω1
M(logD)|U . Then, given ∇ a logarithmic connection on E, we have

∇(si) =
k∑
j=1

ωij ⊗ sj

27



where (ωij) is a k×k-matrix of elemets in Ω1
M(logD)|U , which is called the logarithmic

connection matrix with respect to s. Now consider (ωij) the logarithmic connection

matrix with respect to s. For any s ∈ Γ(E), we have s =
∑k

i=1 fisi for some f1, . . . , fk ∈

Ω0(M), and then

∇(s) =
k∑
j=1

∇(fjsj) =
k∑
j=1

(
dfj +

k∑
i=1

fiωij

)
⊗ sj. (2.1)

In this way, given (ωij) a k × k-matrix of elemets in Ω1
M(logD), we can de�ne a

logarithmic connection given by the expression of equation (2.1).

For each r = 1, · · · , n, we can construct a morphism C-linear

∇r : Ωr
M(logD)⊗ Γ(E) −→ Ωr+1

M (logD)⊗ Γ(E)

as follows. Given ω ∈ Ωr
M(logD) and s ∈ Γ(E), de�ne

∇r(ω ⊗ s) = dω ⊗ s+ (−1)rω ∧∇(s).

When ∇r ◦∇r+1 = 0 for all r, we say that the connection ∇ is integrable. In this way,

se ∇ is integrable, one has the complex of OM -modules

0 −→ Γ(E)
∇−→ Ω1

M(logD)⊗ Γ(E)
∇1

−→ · · · ∇
r−1

−→ Ωr
M(logD)⊗ Γ(E)

∇r

−→

Ωr+1
M (logD)⊗ Γ(E)

∇r+1

−→ · · · ∇
n+1

−→ Ωn
M(logD)⊗ Γ(E) −→ 0.

Assuming that (E, h) is a hermitian vector bundle, we can to de�ne the following

operation, locally given by

h : Ω1(M)⊗O(D)⊗ Γ(E)× Ω1(M)⊗ Γ(E) −→ Ω1(M)⊗O(D)(∑
i

wi
f
⊗ si,

∑
j

ηj ⊗ tj

)
7−→

∑
i,j

wi ∧ ηj
f

h(si, tj)

Similarly, we can to de�ne h : Ω1(M) ⊗ Γ(E) × Ω1(M) ⊗ O(D) ⊗ Γ(E) → Ω1(M) ⊗

O(D). We say that a logarithmic connection ∇ on a hermitian vector bundle (E, h) is

compatible with the metric h with respect to divisor D if, locally, we have

dh(si, sj)

f
= h(∇(si), sj) + h(si,∇(sj)),

where f is a local de�ning function of D and s1, ..., sn is a local frame for E. Motivated

by the Proposition 2.1.1, it is natural to inquire the existence and uniqueness of a
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logarithmic connection that satis�es such de�nition. Suppose there is such connection,

we say ∇. Consider s = s1, ..., sn : U → E a local frame, with U an open subset of M .

Let hij := h(si, sj) and let H = (hij). Thus,

dhij
f

= h(∇(si), sj) + h (si,∇(sj))

=
∑
k

ωikhkj +
∑
k

ωkjhik.

and then  ∂H
f

= ωH

∂H
f

= Hωt

where ω = (ωij). Therefore, the unique solution of the system above is w =
∂HH−1

f
.

Note that, the form ω not necessarily has logarithmic poles along of D, this is, the

existence of a logarithmic connection compatible with the metric is not always guaran-

teed. In some cases, we can do it, for exemplo, if the manifoldM is a Riemann surface,

see [Saito, pg 267]. However, if there is a logarithmic connection on a hermitian vec-

tor bundle (E, h) compatible with the metric h with respect to divisor D, then such

connection is unique.

We will consider M a n-dimensional connected complex manifold and (L, h) a

hermitian line bundle on M . Let X := v−1(0) be a (nowhere dense) divisor in M ,

where v is a holomorphic section of L. Let Y be a compact connected component of

SingX and U a small neighbourhood of Y . In [P], A. Parusi«ski de�ned the µ-number

of X at Y as been µ(X, Y ) := indU π′v, where π = π′ + π′′ is the decomposition of

metric connection of L. The original setup of Milnor number is with an isolated points.

This covers several cases and there are many works in this setup. The de�nition of a

µ-number due Parusi«ski is a remarkable generalization of the Milnor number in the

following sense: if x0 is an isolated singularity of X, then µ(X, {x0}) is equals the

Milnor number of X at x0, see [P, Proposition 1.4].

Theorem 2.1.3 [P, Proposition 1.6] Suppose M be compact. Then,

µ(X) = (−1)nχ(X) +

∫
cn(T ∗

′
M ⊗ L) ∩ [M ]− (−1)nχ(M).

With a computation involving two divisors, one has the following consequence:
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Corollary 2.1.4 [P, Corollary 1.7] With the notation above, we have

µ(X)− µ(Z) = (−1)n(χ(X)− χ(Z)).

Now let D be another divisor in M . Assume that X and D are disjoint. Suppose

there exists a logarithmic connection ∇ : Γ(L) → Ω1
M(logD) ⊗ Γ(L) compatible with

the metric h with respect to divisor D. Note that, the logarithmic connection forms of

∇ with respect to any holomorphic frames are holomorphic outside of D and then, by

analog arguments to [P], we have SingX = {x ∈ X : ∇v(x) = 0} and SingX is closed

and open in {x ∈M : ∇v(x) = 0}.

De�nition 2.1.5 We de�ne the µ-number of X at Y with respect to D as been the

intersection index indU∇v. We denote by µD(X, Y ). If X is compact, then intersection

index of the zero section of Ω1
M(logD)⊗ L and ∇v will be called µ-number of X with

respect to D, and we will denote by µD(X).

Note that, the intersection index over U of ∇v is the number of the zero, in U ,

of a small perturbation of ∇v transversal to the zero section in U , counted with signs.

Moreover, we have

µD(X) =
r∑
i=1

µD(X, Yi)

where Y1, . . . , Yr are the connected components of SingX.

We use as motivation the Theorem 2.1.3 due to Parusi«ski to obtain the following

result:

Proposition 2.1.6 Assume M compact. Then,

µD(X) =

∫
U

cn(Ω1
M(log D)|U)∩ [U ] + (−1)n−1

∫
M

c(L)−1c1(L)c(DerM(−log D))∩ [M ],

where U = {x ∈M : |v(x)| ≤ ε}, for a �xed 0 < ε << 1.

Proof. Consider U = {x ∈M : |v(x)| ≤ ε} for a ε su�ciently small such that U∩D = ∅.

Then,

µD(X) = indM∇v − indM\U∇v

= indM∇v − indM\Uh (∇v, v)

= indM∇′v − (−1)nindM\Ud|v|2

=

∫
M

cn(Ω1
M(log D)⊗ L) ∩ [M ]−

−
(∫

M

cn(Ω1
M(log D)) ∩ [M ]−

∫
U

cn(Ω1
M(log D)|U) ∩ [U ]

)
.
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The last equality follows by Theorem 1.1.3. Lastly, note that∫
M

c(L)−1c1(L)c(DerM(−logD)) ∩ [M ]

=

∫
M

(∑
k≥0

(−1)kc1(L)k+1

)(∑
j≥0

cj(DerM(−logD))

)
∩ [M ]

=

∫
M

∑
k,j≥0

(−1)kc1(L)k+1cj(DerM(−logD)) ∩ [M ]

=

∫
M

n−1∑
k=0

(−1)kc1(L)k+1cn−1−k(DerM(−logD)) ∩ [M ]

= (−1)n−1

∫
M

n−1∑
k=0

c1(L)k+1cn−1−k(Ω
1
M(logD)) ∩ [M ]

and ∫
M

cn(Ω1
M(logD)⊗ L) ∩ [M ]

=

∫
M

n∑
i=0

c1(L)icn−i(Ω
1
M(logD)) ∩ [M ]

=

∫
M

cn(Ω1
M(logD)) ∩ [M ] +

∫
M

n∑
i=1

c1(L)icn−i(Ω
1
M(logD)) ∩ [M ]

=

∫
M

cn(Ω1
M(logD)) ∩ [M ] +

∫
M

n−1∑
k=0

c1(L)k+1cn−k−1(Ω1
M(logD)) ∩ [M ].

�

The case in which X and D are disjoint is not very interesting. Then, we would

like to de�ne a number involving two divisors inM not necessarily disjoints. Therefore,

consider M a n-dimensional connected complex variety. Let X := v−1(0) be a divisor

in M , where v is a holomorphic section of a hermitian line bundle L on M , and let D

be another divisor in M . The number

µD(X) = (−1)n
(∫

U

cn(DerM(−logD)|U) ∩ [U ]−

−
∫
M

c(L)−1c1(L)c(DerM(−logD)) ∩ [M ]

)
is called logarithmic Milnor number of X with poles along D or, simply, logarithmic

Milnor number of X, with respect to a 0 < ε� 1.

In [Alu2], Paolo Alu� established the follow conjeture: for D a locally quasi-

homogeneous free divisor in a n-dimensional nonsingular variety S, is it true that
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c∗(1S\D) = cn(DerS(−logD)) ∩ [S]? This question was answered in the following

settings:

(D1) V is a nonsingular complex surface and the Tjurina number equals the Milnor

number for all singularities of D, or then, D is a locally quasi-homogeneous

divisors, see [Liao1].

(D2) V is a nonsingular projective complex variety andD is a locally quasi-homogeneous

free divisor, see [Liao2].

(D3) V is a nonsingular compact complex variety and D is a certain class of divisors

that Alu� called "free hypersurface arrangement", see [Alu1].

(D4) V is a nonsingular (complex) variety de�ned over an algebraically closed �eld k

of characteristic 0 and D is a free divisor with Jacobian ideal of linear type, see

[Liao3].

This motivates the following de�nition:

De�nition 2.1.7 Let M be a n-dimensional connected complex manifold and let D be

a divisor in M . We say that D is a chern logarithmic divisor in M if

c∗(1M\D) = c(DerM(−logD)) ∩ [M ].

Proposition 2.1.8 Consider M and U as in the Proposition 2.1.6. Suppose that D

is a chern logarithmic divisor in M , such that c∗(1U\U∩D) = c(DerM(−logD)|U)∩ [U ].

Then

µD(X) = (−1)n
(
χ(X;1X\D)−

∫
M

c(L)−1c1(L)c( DerM(−logD)) ∩ [M ]

)
.

Proof. Thus,

µD(X) = (−1)n
(∫

U

cn(DerM(−log D)|U) ∩ [U ]−
∫
M

c(L)−1c1(L)c( DerM(−log D)) ∩ [M ]

)
= (−1)n

(∫
U

c∗(1U\U∩D)−
∫
M

c(L)−1c1(L)c( DerM(−log D)) ∩ [M ]

)
= (−1)n

(∫
U

c∗(U)−
∫
U

c∗(1U∩D)−
∫
M

c(L)−1c1(L)c( DerM(−log D)) ∩ [M ]

)
= (−1)n

(
χ(U)− χ(U ;1U∩D)−

∫
M

c(L)−1c1(L)c( DerM(−log D)) ∩ [M ]

)
= (−1)n

(
χ(X;1X\D)−

∫
M

c(L)−1c1(L)c( DerM(−log D)) ∩ [M ]

)
.

�
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De�nition 2.1.9 We de�ne the logarithmic Milnor number of X with poles along D

or, simply, logarithmic Milnor number of X as been

µD(X) = (−1)n
(
χ(X;1X\D)−

∫
M

c(L)−1c1(L)c(DerM(−log D)) ∩ [M ]

)
.

Example 2.1.10 Consider the crossing divisor D = {xyz = 0} = {x = 0} ∪ {y =

0} ∪ {z = 0} and the hypersurface X = {y2z − x3 = 0} in P2. We have that X ∩D =

{p = (0 : 0 : 1), q = (0 : 1 : 0)} and SingX = {p}. Then, χ(X;1X\D) = χ(X\{p, q}) =

χ(X)− χ({p})− χ({q}) = 0, because χ(X) = 2. It is known that

c
(
Ω1

P2(logD)
)

= c
(
Ω1

P2

) 3∏
i=1

c(ODi
)

where D1 = {x = 0}, D2 = {y = 0} and D3 = {z = 0}, see [Alu5, pg 12], [Sil, 3.1],

[D-A, Proposition 2.3]. Set h = c1 (OP2(1)) the class of a hyperplane in P2. The line

bundle of X is L = O(3h). Hence,

c
(
Ω1

P2(logD)
)

= c
(
Ω1

P2

) 3∏
i=1

c(ODi
) = (1− 3h+ 3h2)(1 + h)3 = 1− 3h2

and then c(DerM(−logD)) = 1 − 3h2. Note that c(L) = 1 + 3h, and then, c(L)−1 =

1− 3h+ 9h2. Therefore,

µD(X) = χ(X;1X\D)−
∫
P2

c(L)−1c1(L)c(DerP2(−logD)) ∩ [P2]

= −
∫
P2

(
(1− 3h+ 9h2)3h(1− 3h2)

)
∩ [P2] = 9.

In [P], Parusi«ski presented a remarkable de�nition that generalizes the initial

notion of Milnor number to a setup not necessarily involving isolated singularities

as follows. Let M be a compact n-dimensional complex manifold and let L be a

holomorphic line bundle over M . Consider X := v−1(0) a divisor in M , where v is

a regular holomorphic section of L. Parusi«ski de�ned a generalization of the Milnor

number given by

µ(X) = (−1)n−1 (χ(M |L)− χ(X)) ,

where for a vector bundle E over M ,

χ(M |E) :=

∫
M

c(E)−1ctop(E)c(M) ∩ [M ].

De�ne χ : X −→ Z given by χ(x) := χ(Fx) for all x ∈ X, where Fx denotes

de Milnor �bre at x and χ(Fx) denotes the Euler characteristic of Fx. Now de�ne the

function µ : X −→ Z by µ = (−1)n−1(χ− 1X).
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Let us �x a strati�cation S = {S} of X such that µ is constant on the strata of S.

It is known that the topological type of the Milnor �bres is constant along the strata

of a Whitney strati�cation of X. Therefore, a Whitney strati�cation of X satis�es the

condition desired above, see [P3], [B-M-M] and [PP]. Thus, for each S ∈ S we denote

by µS the value of x 7−→ µ(X, x) on S. Set

γ(S) = µS −
∑

S′ 6=S,S′⊃S

γ(S ′)

the numbers de�ned inductively on descending dimension of S.

Theorem 2.1.11 Let M be a nonsingular suvariety of PN and let L be a holomorphic

line bundle on X. Consider X as being the zero set of a holomorphic section of L.

Given S a Whitney strati�cation of X, we have

µ(X) =
∑
s∈Z

γ(S)

∫
S

(c(L|S)−1 ∩ c∗(S))

where γ(S) = µS −
∑

S′ 6=S,S′⊃S γ(S ′).

Proof. See [PP, Theorem 4]. �

Suppose that Sing(X) = {x0}. Then, we can take the Whitney strati�cation

{S0 := X\{x0}, S1 := {x0}} of X. Note that, γ(S0) = µS0 = µ(X, x) = 0 , for all

x ∈ X\{x0} and γ(S1) = µS1 − γ(S0) = µS1 = µ(X, x0). Then, using the Theorem

2.1.11, it follow that

µ(X) = γ(S1)

∫
S1

c(L|S1
)−1 ∩ c∗(S1)

= µ(X, x0)

∫
{x0}

[x0] = µ(X, x0)

because c(L|S1
) = 1 and c∗(S1) = c∗(x0) = [x0]. Moreover, one can generalize this fact

as follows.

Example 2.1.12 [PP] Assume that the Sing(X) = {x1, · · · , xr}. We have that

µ(X) = (−1)n
r∑
i=1

µ(X, xi).

In [SS, Theorem 2.4], Seade and Suwa presented a generalization of this fact to "strong"local

complete intersections.

In this way, we can show the following relation between the Milnor number due

to Parusi«ski and the logarithmic Milnor number de�ned above:
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Proposition 2.1.13 Let D a divisor in M . If D is a chern logarithmic divisor in M ,

then

µD(X) = µ(X)− (−1)nχ(X;1X∩D) + (−1)n
∫
M

c(L)−1c1(L)c∗(D).

Proof. Indeed, we have

µD(X) = (−1)n
(
χ(X;1X\X∩D)−

∫
M

c(L)−1c1(L)c(DerM(− logD)) ∩ [M ]

)
= (−1)n

(∫
X

c∗(1X\X∩D)−
∫
M

c(L)−1c1(L)c∗(1M\D)

)
= (−1)n

(∫
X

c∗(1X)−
∫
X

c∗(1X∩D)−
∫
M

c(L)−1c1(L)c∗(1M\D)

)
= (−1)n

(
χ(X)−

∫
M

c(L)−1c1(L)c∗(M)− χ(X;1X∩D) +

∫
M

c(L)−1c1(L)c∗(D)

)
= µ(X)− (−1)nχ(X;1X∩D) + (−1)n

∫
M

c(L)−1c1(L)c∗(D).

�

Now let E be a holomorphic vector bundle over M of rank d. Set X := {p ∈M :

s(p) = 0}, where s is a regular holomorphic section of E, that is, at any point p ∈ X,

the germs of the components of s with repect to a holomorphic frame near p form a

regular sequence in the OM,p of germs holomorphic functions at p. Then, X is a closed

subvariety of M of pure dimension n− d, see [Ful, B.3].

De�nition 2.1.14 Given α a constructible function on M , we de�ne the Milnor num-

ber relative to α as being

µ(X;α) = (−1)dimX

(∫
M

c(E)−1ctop(E)c∗(α)− χ(X;α|X)

)
.

First fact that we highlight below is how we recover our de�nition of the loga-

rithmic Milnor number.

Example 2.1.15 Let D be a chern logarithmic divisor in M . When the rank of the

vector bundle E is 1, this is dim(X) = n− 1, and α = 1M\D, we have that

µ(X;1M\D) = (−1)dimX

(∫
M

c(E)−1ctop(E)c∗(1M\D)− χ(X; (1M\D)|X)

)
= (−1)n−1

(∫
M

c(E)−1ctop(E)c( DerM(−logD)) ∩ [M ]− χ(X;1X\D)

)
= µD(X).
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2.2 On the generalization of Schürmann for Milnor

classes

Let X be a scheme which can be imbedded as a closed subscheme of a nonsingular

variety M . One de�ne the Fulton class of X as being the class

cF (X) = c(TM |X) ∩ s(X,M)

in A∗(X). Fulton showed that cFJ(X) does not depend on the choice of imbedding,

see [Ful, Example 4.2.6(a)]. Moreover, the Fulton-Johnson class of X is de�ned by

cFJ(X) = c(TM |X) ∩ s(N )

where s(N ) is the total Chern class of the conormal sheaf of the embedding of X

in M , see [FJ]. Assuming that X is a local complete intersection, the Fulton and

Fulton-Johnson classes coincide and are equal to

c(TM |X)c(NXM)−1 ∩ [X] = c(TX) ∩ [X]

where TX = TM |X −NXM denotes the virtual tangent bundle on X, which is a well-

de�ned element of the Grothendieck group of vector bundles on X, see [Ful, Example

3.2.7].

Let M be a nonsingular compact complex analytic variety of pure dimension n

and let L be a holomorphic line bundle over M . Consider X := v−1(0) a divisor in M ,

where v is a regular holomorphic section of L. In this way, we have

cF (X) = c(TM |X − L|X) ∩ [X].

De�nition 2.2.1 [PP3], [BLSS], [Y], [A4] The Milnor class of X is de�ned as being

M(X) = (−1)n−1(cFJ(X)− c∗(X)).

Due to Parusi«ski and Pragacz, there is the following formula to Milnor number

M(X) in terms of a Whitney strati�cation of X.

Theorem 2.2.2 Take S = {S} a Whitney strati�cation of X. Then

M(X) =
∑
s∈S

γ(S)c(L|X)−1 ∩ (ιS,X)∗c∗(S)

where γ(S) = µS −
∑

S′ 6=S,S′⊃S γ(S ′) and the aplication ιS,X denotes the inclusion from

S to X.
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Proof. See [PP3, Theorem 0.2]. �

In particular, one has∫
X

M(X) =
∑
s∈S

γ(S)

∫
S

c(L|S)−1 ∩ c∗(S).

Note that Parusi«ski and Pragacz had already proven the above formula to M projec-

tive and X not necessarily compact, see Theorem 2.1.11.

Example 2.2.3 [PP3, Example 0.1] Assume that Sing(X) = {x1, · · · , xr}. Then, one
has

M(X) =
r∑
i=1

µ(X, xi)[xi] ∈ H0(X).

There is a generalization of this result for "strong"local complete intersections, for more

details see [Suwa].

Let ι : X ↪→ Z be a regular embedding between algebraic (or complex) possibly

singular varieties and let NXZ be a normal bundle of X in Z. The diagram

CF (Z)
c∗ //

ι∗

��

H∗(Z)

ι∗∩c(NXZ)−1

��
CF (X) c∗

// H∗(X)

does not commute in general, where ι∗ : H∗(Z) −→ H∗(X) is the Gysin homomorphism.

Indeed, suppose the particular case in which Z = M a smooth variety. On the one

hand, c∗(ι∗(1M)) = c∗(1X) which is equals to Schwartz-MacPherson class of X. On

the other hand,

c(NXM)−1 ∩ ι∗(c∗(1M)) = c(NXM)−1 ∩ ι∗(c(TM) ∩ [M ])

= c(NXM)−1 · c(ι∗TM) ∩ ι∗[M ]

= c(NXM)−1 · c(TM |X) ∩ [X] = cFJ(X)

and it is known that, in general, the Schwartz-MacPherson class and the Fulton-

Johnson class are di�erent, see [Schür1], [PP3], [BLSS], [Y], [A4]. This motivated

J. Schürmann the following de�nition:

De�nition 2.2.4 [Schür1] Let ι : X ↪→ Z be a regular embedding and let α be a

constructible function on Z. One de�nes the Milnor class of the pair X ⊂ Z relative

to α as been

M(X ⊂ Z;α) = (−1)dimX
(
c(NXZ)−1 ∩ ι∗(c∗(α))− c∗(ι∗(α))

)
∈ H∗(X),

where NXZ is the normal cone of X in Z.
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When Z is a smooth variety, we also denoteM(X ⊂ Z;α) simply byM(X;α).

Theorem 2.2.5 Suppose that Z is a smooth variety and suppose that X is the zero-

scheme of a regular section of a vector bundle E on Z. Given a constructible function

α on Z, it follows that

µ(X;α) =

∫
X

M(X;α).

Proof. We will take a particular situation of the Example 1.5.9 given by the following

�ber square

X
ι //

Id
��

Z

Id
��

X ι
// Z

Therefore, ι∗ι∗(β) = ctop(Id
∗E) ∩ β = ctop(E) ∩ β, for all β ∈ A∗Z. By de�nition, we

have

µ(X;α) = (−1)dimX

(∫
X

c(E)−1ctop(E)c∗(α)− χ(X;α|X)

)
.

Thus, using the Example 1.5.9 and Proposition 1.5.8, we obtain

µ(X;α) = (−1)dimX

(∫
X

c(E)−1 ∩ ι∗ι∗c∗(α)−
∫
X

c∗(ι
∗α)

)
= (−1)dimX

(∫
X

ι∗
(
c(ι∗E)−1 ∩ ι∗c∗(α)

)
−
∫
X

c∗(ι
∗α)

)
= (−1)dimX

(∫
X

c(NXZ)−1 ∩ ι∗c∗(α)−
∫
X

c∗(ι
∗α)

)
=

∫
X

M(X;α)

because ι∗E = E|X = NXZ and χ(X;α|X) =
∫
X
c∗(ι

∗α). �

In this way, the class cFJ(X ⊂ Z;α) := c(NXZ)−1 ∩ ι∗(c∗(α)) is called Fulton-

Johnson class of the pair X ⊂ Z relative to α; and the class cSM(X ⊂ Z;α) = c∗(ι
∗α)

is called Schwartz-MacPherson class of the pair X ⊂ Z relative to α.

Question. Let L be a holomorphic line bundle over a smooth manifold M and let

X := v−1(0) be a divisor inM , where v is a regular holomorphic section of L. Consider

D another divisor in M . Assume that SingX = {x1, . . . , xs} ⊂ D. One de�nes the

number

µBR(X,D) :=
s∑
i=1

µBR(fi, D),

where f1, . . . , fs are local de�ning functions of X at x1, . . . , xs, respectively, with fi

being �nitely R(D)-determined, for more details see [BR].

Is there any relationship between the numbers µBR(X,D) and µD(X)?
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Capítulo 3

Intersection product formulas relative

to constructible functions

This chapter is about some product formulas and some intersection formulas of

varieties, generalized for arbitrary constructible functions.

3.1 Product formulas for the Milnor class of construc-

tible functions

Let X and Y be manifolds and let α and β be constructible functions on X and

Y , respectively. One de�nes (α⊗β)(x, y) := α(x)β(y), for all (x, y) ∈ X×Y . We have

that α⊗ β is a constuctible function on X × Y .

Theorem 3.1.1 [Kwie],[Kwei-Yoka] Consider α a constructible function on X and β

a constructible functions on Y . Then,

c∗(α⊗ β) = c∗(α)× c∗(β).

In particular, c∗(X × Y ) = c∗(X)× c∗(Y ) and cMa(X × Y ) = cMa(X)× cMa(Y ),

because 1X ⊗ 1Y = 1X×Y and EuX×Y = EuX ⊗ EuY .

For each i = 1, 2, let Mi be an (ni + ki)-dimensional compact complex analytic

manifold and let Ei be a holomorphic vector bundle over Mi of rank ki. Consider si

a regular holomorphic section of Ei, and consider the ni-dimensional local complete

intersection. For each i = 1, 2, consider the projection pi : M1 ×M2 −→ Mi. Then,



consider the holomorphic section s1 ⊕ s2 : M1 ×M2 −→ p∗1E1 ⊕ p∗2E2 given by (s1 ⊕

s2)(x, y) = (s1(x), s2(y)), for all (x, y) ∈M1×M2. Note that X1×X2 = (s1⊕s2)−1(0).

Let α and β be constructible functions on M1 and M2, respectively.

Proposition 3.1.2 We have

c∗(X1 ×X2 ⊂M1 ×M2;α⊗ β) = c∗(X1 ⊂M1;α)× c∗(X2 ⊂M2; β).

Proof. For all (x1, x2) ∈ X1 ×X2, it follows that

(ι1 × ι2)∗(α⊗ β)(x1, x2) = (α⊗ β)(ι1(x1), ι2(x2))

= α(ι1(x1))β(ι2(x2))

= ((ι1
∗α)⊗ (ι2

∗β))(x1, x2).

Thus, (ι1 × ι2)∗(α⊗ β) = (ι1
∗α)⊗ (ι2

∗β). Then, using Theorem 3.1.1

c∗(X1 ×X2 ⊂M1 ×M2;α⊗ β) = c∗((ι1 × ι2)∗(α⊗ β))

= c∗((ι1
∗α)⊗ (ι2

∗β))

= c∗(ι
∗
1α)× c∗(ι∗2β)

= c∗(X1 ⊂M1;α)× c∗(X2 ⊂M2; β).

�

One should notice that the above proposition generalizes the Theorem 3.1.1. For

this, take α = 1X1 and β = 1X2 . Now we look for, in similar fashion, a result for the

Fulton-Johnson classes.

Proposition 3.1.3 In the same conditions, we have

cFJ(X1 ×X2 ⊂M1 ×M2;α⊗ β) = cFJ(X1 ⊂M1;α)× cFJ(X2 ⊂M2; β).

Proof. By de�ntion,

cFJ(X1 ×X2 ⊂M1 ×M2;α⊗ β) = c(NX1×X2M1 ×M2)−1 ∩ (ι1 × ι2)∗ (c∗(α⊗ β)).

By Theorem 3.1.1 and Proposition 1.5.4(ii), it follows that

(ι1 × ι2)∗(c∗(α⊗ β)) = (ι1 × ι2)∗(c∗(α)× c∗(β))

= (ι1)∗(c∗(α))× (ι2)∗(c∗(β)).
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Since NX1×X2M1 ×M2 = p∗1 (NX1M1)⊕ p∗2 (NX2M2) and using the Example 1.5.11, for

all γ ∈ A∗X1 and η ∈ A∗X2, we have

γ × η = ((c(NX1M1)c(NX1M1)−1) ∩ γ)× ((c(NX2M2)c(NX2M2)−1) ∩ η)

= c(p∗1 (NX1M1))c(p∗2 (NX2M2))(c(NX1M1)−1 ∩ γ)× (c(NX2M2)−1 ∩ η)

= c(p∗1 (NX1M1)⊕ p∗2 (NX2M2))(c(NX1M1)−1 ∩ γ)× (c(NX2M2)−1 ∩ η)

where the last equality follows from the Whitney product formula. Consequently,

c(p∗1 (NX1M1)⊕ p∗2 (NX2M2))−1 ∩ (γ × η) = (c(NX1M1)−1 ∩ γ)× (c(NX2M2)−1 ∩ η).

Therefore,

cFJ(X1 ×X2 ⊂M1 ×M2;α⊗ β) = c(p∗1 (NX1M1)⊕ p∗2 (NX2M2))−1 ∩

∩(ι1
∗(c∗(α))× ι2∗(c∗(β)))

=
(
c(p∗1 (NX1M1))−1 ∩ ι∗1(c∗(α))

)
×

×
(
c(p∗2 (NX2M2))−1 ∩ ι∗2(c∗(β))

)
= cFJ(X1 ⊂M1;α)× cFJ(X2 ⊂M2; β).

�

By de�nition, the Milnor class is the di�erence, up to sign, between the Schwartz-

MacPherson class and the Fulton-Johnson class. Then, we can use the above results

to show the following theorem.

Theorem 3.1.4 Let M1, · · · ,Mr be compact complex manifolds of dimension ni, res-

pectively. For each i, consider a holomorphic vector bundle Ei of rank di over Mi, a

regular holomorphic section si : Mi −→ Ei and Xi := s−1
i (0) the local complete in-

tersection of dimension ni − di. For each i, let αi be a constructible function on Mi.

Then,

M(X1 × · · · ×Xr;α1 ⊗ · · · ⊗ αr) =
∑

(−1)(n1−d1)ε1+···+(nr−dr)εrP1 · · · · · Pr

where the sum runs over all choices of Pi ∈ {c∗(Xi;αi),M(Xi;αi)}, i = 1, · · · , r,
except (P1, · · · , Pr) = (c∗(X1;α1), · · · , c∗(Xr;αr)) and

εi =

{
1, if Pi = c∗(Xi;αi)

0, if Pi =M(Xi;αi).
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Proof. First of all, on the one hand, we have

M(X1 ×X2;α1 ⊗ α2) = (−1)n1+n2−d1−d2(cFJ(X1 ×X2;α1 ⊗ α2)−

−c∗(X1 ×X2;α1 ⊗ α2))

= (−1)n1+n2−d1−d2(cFJ(X1;α1)× cFJ(X2;α2)−

−c∗(X1;α1)× c∗(X2;α2).

On the other hand,

M(X1;α1)×M(X2;α2)+(−1)n1−d1c∗(X1;α1)×M(X2;α2) +

+(−1)n2−d2M(X1;α1)×c∗(X2;α2)

= (−1)n1−d1(cFJ(X1;α1)− c∗(X1;α1))×(−1)n2−d2(cFJ(X2;α2)− c∗(X2;α2))+

+(−1)n1−d1c∗(X1;α1)×(−1)n2−d2(cFJ(X2;α2)− c∗(X2;α2)) +

+(−1)n2−d2(−1)n1−d1(cFJ(X1;α1)− c∗(X1;α1))×c∗(X2;α2)

= (−1)n1+n2−d1−d2 (cFJ(X1;α1)× cFJ(X2;α2)− cFJ(X1;α1)× c∗(X2;α2)−

− c∗(X1;α1)× cFJ(X2;α2) + c∗(X1;α1)× c∗(X2;α2)
)

+

+(−1)n1+n2−d1−d2(c∗(X1;α1)× cFJ(X2;α2)− c∗(X1;α1)× c∗(X2;α2)) +

+(−1)n1+n2−d1−d2(cFJ(X1;α1)× c∗(X2;α2)− c∗(X1;α1)× c∗(X2;α2)).

Therefore,

M(X1 ×X2;α1 ⊗ α2) = (−1)n1−d1c∗(X1;α1)×M(X2;α2) +

+(−1)n2−d2M(X1;α1)×c∗(X2;α2) +M(X1;α1)×M(X2;α2).

Now take r > 2 and suppose that the result holds for r − 1. Thus,

M(X1 × · · · ×Xr−1;α1 ⊗ · · · ⊗ αr−1) =
∑

(−1)n1ε1+···+nr−1εr−1P1 · · · · · Pr−1,

where the sum runs over all choices of Pi ∈ {c∗(Xi;αi),M(Xi;αi)}, i = 1, · · · , r − 1,

except (P1, · · · , Pr−1) = (c∗(X1;α1), · · · , c∗(Xr−1;αr−1)) and

εi =

 1, if Pi = c∗(Xi;αi)

0, if Pi =M(Xi;αi).
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Then, it follows that

M(X1 × · · · ×Xr;α1 ⊗ · · · ⊗ αr)

= (−1)n1+···+nr−1c∗(X1 × · · · ×Xr−1;α1 ⊗ · · · ⊗ αr−1)×M(Xr;αr)+

+(− 1)nrM(X1 × · · · ×Xr−1;α1 ⊗ · · · ⊗ αr−1)× c∗(Xr;αr)+

+M(X1 × · · · ×Xr−1;α1 ⊗ · · · ⊗ αr−1)×M(Xr;αr)

= (−1)n1+···+nr−1c∗(X1;α1)× · · · × c∗(Xr−1;αr−1)×M(Xr;αr)+

+(− 1)nr
∑

(−1)n1ε1+···+nr−1εr−1P1 · · · · · Pr−1 × c∗(Xr;αr)+

+
∑

(−1)n1ε1+···+nr−1εr−1P1 · · · · · Pr−1 ×M(Xr;αr)

=
∑

(−1)n1ε1+···+nrεrP1 · · · · · Pr.

�

In particular, when αi = 1Xi
, for all i, we obtain the principal result of [O-Y].

Explicitly:

Corollary 3.1.5 In the same conditions, one has

M(X1 × · · · ×Xr) =
∑

(−1)(n1−d1)ε1+···+(nr−dr)εrP1 · · · · · Pr

where the sum runs over all choices of Pi ∈ {c∗(Xi),M(Xi)}, i = 1, · · · , r, except
(P1, · · · , Pr) = (c∗(X1), · · · , c∗(Xr)) and

εi =

{
1, if Pi = c∗(Xi)

0, if Pi =M(Xi).

Proof. Note thatM(X1×· · ·×Xr;1X1⊗· · ·⊗1Xr) =M(X1×· · ·×Xr;1X1×···×Xr) =M(X1×

· · · × Xr). Moreover, for each i = 1, · · · , r, we know that c∗(Xi;1Xi
) = c∗(Xi) and

M(Xi;1Xi
) =M(Xi). �

3.2 On the diagonal embedding

Consider M a complex manifold and X an analytic subvariety of M . Let S be a

Whitney stratication of M adapted to X. Given x ∈ X ∩ S for some S ∈ S, consider

g : (M,x) −→ (C, 0) a germ of holomorphic function such that dxg is a non-degenerate

covector at x with respect to S, that is, dxg ∈ T ∗SM and dxg /∈ T ∗S′M for all stratum

S ′ 6= S. For N a germ of a closed complex submanifold of M which is transversal to S
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with N ∩ S = {x}, one de�ne the complex link lS of S by

lS := X ∩N ∩Bδ(x) ∩ {g = ω}

for 0 < |ω| � δ � 1, and one de�nes the normal Morse index

η(S;F •) := χ(X ∩N ∩Bδ(x), lS;F •)

where the right-hand side is the Euler characteristic of the relative hypercohomology.

the number η(S;F •) does not depend on the choices of x ∈ S, g and N , see [G-M,

Section 2.3]. Moreover, we have

η(S;F •) := χ(X ∩N ∩Bδ(x);F •)− χ(lS;F •).

The conormal variety of a subvariety X in a complex manifold M is given by

T ∗XM := closure
{

(x, θ) ∈ T ∗M | x ∈ Xreg and θ|TxXreg ≡ 0
}
.

Let L(M) be the free abelian group generated by all the conormal spaces T ∗XM , where

X varies over all subvarieties ofM . Given a constructible function α onM with respect

to a Whitney stratication S de�nes an element in L(M) by

Ch(α) :=
∑
S∈S

(−1)dimSη(S;α) · T ∗
S
M.

Inducing an isomorphism Ch : CF (M) −→ L(M).

Let M be an n-dimensional compact complex analytic manifold. De�ne M (r) :=

M×· · ·×M . And let E be a holomorphic vector bundle overM (r) of rank d. Consider

∆ : M −→M (r) the diagonal morphism, which is a regular embedding of codimension

nr−n. Let t be a regular holomorphic section of E. This means that set Z(t) := {p ∈

M (r) : t(p) = 0} is a closed subvariety of M (r) of dimension nr − d. In addition, the

morphism ∆ induces the re�ned Gysin homomorphism

∆! : H2k(Z(t)) −→ H2(k−nr+n)(Z(∆∗(t))).

The re�ned intersection product is de�ned by γ1 · . . . · γr := ∆!(γ1× · · · × γr), see [Ful,

Example 8.1.9].
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Consider the projectivized cotangent bundles P(T ∗M) and P(T ∗(M (r))). We will

denote the vector bundle P(T ∗M ⊕· · ·⊕T ∗M) by P(T ∗(M (r))). We have the following

�bre square diagram:

P((T ∗M)⊕r) δ //

p

��

P(T ∗M (r))

π(r)

��
M

∆
//M (r)

Z(∆∗t)
∆

//
?�

ι

OO

Z(t)
?�

ι

OO (3.1)

where π(r) is the natural proper map. Let i : P(T ∗M) −→ P((T ∗M)⊕r) be the

morphism induced by the diagonal embedding T ∗M −→ T ∗M ⊕ · · · ⊕ T ∗M .

Lemma 3.2.1 Let β be a constructible function on M (r) with respect to a Whitney

stratication S, that is, β is constant at each stratum of S. We assume transversal to

∆(M) and such that the intersections S ∩∆(M) are connected. Then

δ![P(Ch(β))] = (−1)nr−ni∗[P(Ch(∆∗β))].

Proof. See [B-M-S, Proposition 1.4]. �

There is a classical description of the Schwartz-MacPherson class due to C. Sab-

bah, see [Sab]. In our context, such a generalization is as follows: given a constructible

function α on M (r), we have

c∗(Z(t);α) = (−1)nr−1c
(
TM (r)|Z(t)

)
∩ π(r)

∗ (c(Or(1)−1) ∩ [P(Ch(α))]), (3.2)

where Or(1) is the tautological line bundle on the projectivisation P(T ∗M (r)) −→M (r),

see [P4, pg 13], [P5, pg 352], [PP3, pg 4] and [Ken].

Proposition 3.2.2 With the same notation, we have

∆!(c∗(Z(t);α)) = c
((
TM |Z(∆∗t)

)⊕r−1
)
∩ c∗(Z(∆∗t); ∆∗α).

Proof. Using the description (3.2) and Proposition 1.5.8, one has

∆!c∗(Z(t);α) = (−1)nr−1c
(
∆∗
(
TM (r)|Z(t)

))
∩∆!π(r)

∗ (c(Or(1))−1 ∩ [P(Ch(α))]).

By the Theorem 1.5.7 and the Proposition 1.5.8 , it follows that

∆!π(r)
∗ (c(Or(1))−1 ∩ [P(Ch(α))]) = p∗δ

!(c(Or(1))−1 ∩ [P(Ch(α))])

= p∗
(
c(δ∗Or(1))−1

)
∩ δ![P(Ch(α))].
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It is known that δ∗Or(1) = c(OP((T ∗M)⊕r)(1)) is the tautological line bundle on the

projectivition P((T ∗M)⊕r) −→ M (r) and c
(
∆∗
(
TM (r)|Z(t)

))
= c

((
TM |Z(∆∗t)

)⊕r)
.

Thus, by Lemma 3.2.1, we have that δ![P(Ch(α))] = (−1)nr−ni∗[P(Ch(∆∗α))], and

then

∆!c∗(Z(t);α) = (−1)n−1c(TM⊕r|Z(∆∗t)) ∩

∩p∗
(
c(OP((T ∗M)⊕r)(1))−1

)
∩ i∗[P( Ch(∆∗α))]

= (−1)n−1c(TM⊕r|Z(∆∗t)) ∩

∩(p ◦ i)∗(c(i∗OP((T ∗M)⊕r)(1))−1 ∩ [P( Ch(∆∗α))]),

where the last equality follows from the projection formula. Since that i∗OP((T ∗M)⊕r)(1) =

OP(T ∗M)(1) and that q := (p ◦ i) : P(T ∗M) −→ M is the projectived cotangent

morphism, one has

∆!c∗(Z(t);α) = (−1)n−1c(TM⊕r|Z(∆∗t)) ∩ q∗(c(OP(T ∗M)(1))−1 ∩ [P( Ch(∆∗α))])

= c
(
(TM |Z(∆∗t))

⊕r−1
)
∩ c∗(Z(∆∗t); ∆∗α).

�

Through this text we will assume that Z(t) ⊂ Supp(α).

Proposition 3.2.3 With the same notation, we have

∆!(cFJ(Z(t);α)) = c
((
TM |Z(∆∗t)

)⊕r−1
)
∩ cFJ(Z(∆∗t); ∆∗α).

Proof. By de�nition of Fulton-Johnson class of Z(t) relative to α and by the commu-

tativity of the diagram (3.1), one has

∆!cFJ(Z(t);α) = ∆!(c(E|Z(t))
−1 ∩ ι∗c∗(α))

= c(∆∗(E|Z(t)))
−1 ∩∆!ι∗c∗(α)

= c(∆∗E|Z(∆∗t))
−1 ∩ ι∗∆!c∗(α).

In [PP3], the Schwartz-MacPherson class of the constructible function α has the fol-

lowing description:

c∗(α) = (−1)nr−1c
(
TM (r)|Supp(α)

)
∩ π(r)

∗ (c(Or(1)−1) ∩ [P(Ch(α))]),
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where Or(1) is the tautological line bundle on the projectivisation P(T ∗M (r)) −→M (r).

Then,

∆!c∗(α) = (−1)nr−1c
(
∆∗
(
TM (r)|Supp(α)

))
∩∆!π(r)

∗ (c(Or(1))−1 ∩ [P(Ch(α))]).

Similarly the proof of the Proposition 3.2.2, we have that

∆!π(r)
∗ (c(Or(1))−1 ∩ [P(Ch(α))]) = q∗(c(OP(T ∗M)(1))−1 ∩ [P(Ch(∆∗α))]

where q : P(T ∗M) −→ M is the projectived cotangent morphism. Since that

c
(
∆∗
(
TM (r)|Supp(α)

))
= c

((
TM |Supp(∆∗α)

)⊕r)
, it follows that

∆!c∗(α) = (−1)n−1c
((
TM |Supp(∆∗α)

)⊕r) ∩ q∗(c(OP(T ∗M)(1))−1 ∩ [P(Ch(∆∗α))])

and then,

∆!cFJ(Z(t);α) = (−1)n−1c(∆∗E|Z(∆∗t))
−1 ∩ ι∗

(
c
((
TM |Supp(∆∗α)

)⊕r)∩
∩q∗(c(OP(T ∗M)(1))−1 ∩ [P(Ch(∆∗α))])

)
= (−1)n−1c(∆∗E|Z(∆∗t))

−1c
(
ι∗
(
TM |Supp(∆∗α)

)⊕r) ∩
∩ι∗q∗(c(OP(T ∗M)(1))−1 ∩ [P(Ch(∆∗α))])

= (−1)n−1c(∆∗E|Z(∆∗t))
−1c
(
ι∗
(
TM |Supp(∆∗α)

)⊕r−1
)
·

·c
(
ι∗
(
TM |Supp(∆∗α)

))
∩ ι∗q∗(c(OP(T ∗M)(1))−1 ∩ [P(Ch(∆∗α))])

= (−1)n−1c(∆∗E|Z(∆∗t))
−1c
((
TM |Z(∆∗t)

)⊕r−1
)
∩

∩ι∗
(
c
(
TM |Supp(∆∗α)

)
∩ q∗(c(OP(T ∗M)(1))−1 ∩ [P(Ch(∆∗α))])

)
= c(∆∗E|Z(∆∗t))

−1c
((
TM |Z(∆∗t)

)⊕r−1
)
∩ ι∗c∗(∆∗α)

= c
((
TM |Z(∆∗t)

)⊕r−1
)
∩ cFJ(Z(∆∗t); ∆∗α).

�

As a consequence of the above propositions, we have the following result on the

Milnor class.

Proposition 3.2.4 We have that,

∆!(M(Z(t);α)) = (−1)nr−nc
((
TM |Z(∆∗t)

)⊕r−1
)
∩M(Z(∆∗t); ∆∗α).
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Proof. Indeed, using the de�nition of the Milnor class and the above propositions, we

have that

∆!(M(Z(t);α)) = ∆!
(
(−1)nr−n(cFJ(Z(t);α)− c∗(Z(t);α))

)
= (−1)nr−nc

((
TM |Z(∆∗t)

)⊕r−1
)
∩

∩
(
cFJ(Z(∆∗t); ∆∗α)− c∗(Z(∆∗t); ∆∗α)

)
= (−1)nr−nc

((
TM |Z(∆∗t)

)⊕r−1
)
∩M(Z(∆∗t); ∆∗α).

�

3.3 Intersection product formulas relative to cons-

tructible functions

Consider M a compact complex manifold with dimension equals to n. For

each i = 1, · · · , r, let Ei be a holomorphic vector bundle of rank di over M and let

Xi := s−1
i (0) be a (n−di)-dimensional local complete intersection, where si is a regular

holomorphic section on Ei. Here we are assuming that the product X1 × · · · × Xr is

equiped with a Whitney strati�cation such that the diagonal embedding ∆ is transver-

sal to all strata. For each i, let pi : M (r) −→ M be the ith-projection. Now, consider

the holomorphic exterior product section

s = s1 ⊕ · · · ⊕ sr : M (r) −→ (p∗1E1)⊕ · · · ⊕ (p∗rEr),

given by s(x1, · · · , xr) = (s1(x1), · · · , sr(xr)). Therefore, Z(s) = X1 × · · · × Xr and

X := Z(∆∗(s)) = X1 ∩ · · · ∩Xr.

Let α1, · · · , αr be constructible functions on M and let ∆ : M −→ M (r) be the

diagonal morphism. Set α := α1⊗· · ·⊗αr the constructible function onM (r) such that

(α1 ⊗ · · · ⊗ αr) (x1, · · · , xr) = α1(x1) · · ·αr(xr), for all (x1, · · · , xr) ∈ M (r). Note that,

∆∗α(x) = (α1⊗· · ·⊗αr)◦∆(x) = α1(x) · · ·αr(x) for all x ∈M . Moreover, ∆∗α(x) = 0

if x /∈ X; and ∆∗α(x) = α1(x) · · ·αr(x) if x ∈ X. In this way, ∆∗(α1⊗ · · · ⊗αr) is also

denoted by α1 ⊗ · · · ⊗ αr.

Lemma 3.3.1 With the same notation, we have

M(X;α) = (−1)nr−nc
(
(TM |X)⊕r−1

)−1∩
∑

(−1)(n−d1)ε1+···+(n−dr)εrP1·· · ··Pr ∈ H∗(X),
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where

εi =

{
1, if Pi = c∗(Xi;αi)

0, if Pi =M(Xi;αi).

Proof. Using the Proposition 3.2.4,

∆!(M(Z(s);α)) = (−1)nr−nc
((
TM |Z(∆∗s)

)⊕r−1
)
∩M(Z(∆∗s); ∆∗α).

Then,

M(X;α) = (−1)nr−nc(TM⊕r−1|X)−1 ∩∆!(M(X1 × · · · ×Xr;α))

By Theorem 3.1.4, it follows that

M(X;α) = (−1)nr−nc(TM⊕r−1|X)−1 ∩
∑

(−1)(n−d1)ε1+···+(n−dr)εr∆!(P1 × · · · × Pr)

where the sum runs over all choices of Pi ∈ {c∗(Xi;αi),M(Xi;αi)}, i = 1, · · · , r − 1,

except (P1, · · · , Pr−1) = (c∗(X1;α1), · · · , c∗(Xr−1;αr−1)) and

εi =

 1, if Pi = c∗(Xi;αi)

0, if Pi =M(Xi;αi).

Since ∆!(P1 × · · · × Pr) = P1 · · · · · Pr, the result follows.

�

This means that, in particular, for r = 2 we have

M(X;α1 ⊗ α2) = c(TM |X)−1 ∩ ((−1)nM(X1;α1)M(X2;α2)+

+(−1)d1c∗(X1;α1)M(X2;α2) + (−1)d2M(X1;α1)c∗(X2;α2)).

Moreover, for r = 3, we have

M(X;α) = c
(
(TM |X)⊕2

)−1 ∩ (M(X1;α1)M(X2;α2)M(X3;α3)+

+(− 1)d1+d2c∗(X1;α1)c∗(X2;α2)M(X3;α3)+(−1)d1+d3c∗(X1;α1)M(X2;α2)c∗(X3;α3)+

+(− 1)d2+d3M(X1;α1)c∗(X2;α2)c∗(X3;α3)+(−1)n−d1c∗(X1;α1)M(X2;α2)M(X3;α3)+

+(− 1)n−d2M(X1;α1)c∗(X2;α2)M(X3;α3)+(−1)n−d3M(X1;α1)M(X2;α2)c∗(X3;α3)).

Now we will present the main result in this text.

Theorem 3.3.2 With the same notation, we have the following formulas:

cFJ(X;α) = c
(
(TM |X)⊕r−1

)−1 ∩ cFJ(X1;α1) · . . . · cFJ(Xr;αr), (3.3)

49



cSM(X;α) = c
(
(TM |X)⊕r−1

)−1 ∩ cSM(X1;α1) · . . . · cSM(Xr;αr) (3.4)

and

M(X;α) = (−1)dimXc
(
(TM |X)⊕r−1

)−1 ∩ (cFJ(X1;α1) · · · cFJ(Xr;αr)−
−c∗(X1;α1) · · · c∗(Xr;αr))

where α denotes the constructible function α1 ⊗ · · · ⊗ αr.

Proof. By Proposition 3.2.3, one has

∆!(cFJ(Z(s);α)) = c
((
TM |Z(∆∗s)

)⊕r−1
)
∩ cFJ(Z(∆∗s); ∆∗α).

Then, using the Proposition 3.1.3, it follows that

cFJ(X;α) = c
(
(TM |X)⊕r−1)−1 ∩∆!(cFJ(X1 × · · · ×Xr;α1 ⊗ · · · ⊗ αr))

= c
(
(TM |X)⊕r−1)−1 ∩∆!

(
cFJ(X1;α1)× · · · × cFJ(Xr;αr)

)
Since ∆!

(
cFJ(X1;α1)× · · · × cFJ(Xr;αr)

)
= cFJ(X1;α1)·. . .·cFJ(Xr;αr), one has that

cFJ(X;α) = c
(
(TM |X)⊕r−1)−1 ∩ cFJ(X1;α1) · . . . · cFJ(Xr;αr).

Now, the Proposition 3.2.2 states that

∆!(cSM(Z(s);α)) = c
((
TM |Z(∆∗s)

)⊕r−1
)
∩ cSM(Z(∆∗s); ∆∗α).

In similar fashion, using the Proposition 3.1.2, we have

cSM(X;α) = c
(
(TM |X)⊕r−1

)−1 ∩ cSM(X1;α1) · . . . · cSM(Xr;αr).

Lastly, using the de�nition of Milnor class of X relative to α and the formulas (3.3)

(3.4), it follows that

M(X;α) = (−1)dimXc
(
(TM |X)⊕r−1

)−1 ∩ (cFJ(X1;α1) · · · cFJ(Xr;αr)−

−c∗(X1;α1) · · · c∗(Xr;αr)).

�

The above result also follows from Lemma 3.3.1. To exemplify the approach of

the computation, let us look at the case r = 2. By Lemma 3.3.1, we have

M(X;α1 ⊗ α2) = (−1)2n−nc(TM |X)−1 ∩ (M(X1;α1)M(X2;α2)+

+(−1)n−d1c∗(X1;α1)M(X2;α2) + (−1)n−d2M(X1;α1)c∗(X2;α2)).
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For each i = 1, 2, one has M(Xi;αi) = (−1)n−di(cFJ(Xi;αi) − c∗(Xi;αi)). Then, it

follows that

M(X;α1 ⊗ α2) = (−1)2n−nc(TM |X)−1 ∩ ((−1)2n−d1−d2(cFJ(X1;α1)− c∗(X1;α1)) ·

·(cFJ(X2;α2)− c∗(X2;α2))+(−1)2n−d1−d2c∗(X1;α1)(cFJ(X2;α2)−

−c∗(X2;α2))+(−1)2n−d1−d2(cFJ(X1;α1)− c∗(X1;α1))c∗(X2;α2))

= (−1)dimXc(TM |X)−1 ∩ (cFJ(X1;α1)cFJ(X2;α2)−

−c∗(X1;α1)c∗(X2;α2))

because dimX = n− d1 − d2.

Forthwith, we have the following consequence:

Corollary 3.3.3 The number (−1)dimXµ(X;α) is equals to the degree∫
X

c
(
(TM |X)⊕r−1

)−1 ∩ (cFJ(X1;α1) · · · cFJ(Xr;αr)− c∗(X1;α1) · · · c∗(Xr;αr)).

Proof. The result follows immediately from Theorem 2.2.5 and Theorem 3.3.2. �

In particular, when we have αi = 1Xi
for all i = 1, . . . , r, we retrieve the original

formulas of [B-M-S].

Corollary 3.3.4 We have that

cFJ(X) = c
(
(TM |X)⊕r−1

)−1 ∩ cFJ(X1) · . . . · cFJ(Xr),

cSM(X) = c
(
(TM |X)⊕r−1

)−1 ∩ cSM(X1) · . . . · cSM(Xr)

and

M(X) = (−1)dimXc
(
(TM |X)⊕r−1

)−1 ∩ (cFJ(X1) · · · cFJ(Xr)−
−c∗(X1) · · · c∗(Xr)).
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Capítulo 4

Segre classes relative to a

constructible function

Let X be a proper closed subscheme of a variety Y . Consider Ỹ the blow-up of

Y along X, X̃ = P (NXY ) the exceptional divisor and η : X̃ −→ X the projection,

where NXY is the normal bundle. It can be organized in the following diagram:

P (NXY ) = // X̃ ι̃ //

η

��

Ỹ = //

��

BlXY

X ι
// Y

The Segre class of X in Y is characterized by

s(X, Y ) =
∑
i≥0

η∗

(
c1 (O(1))i ∩ [P (NXY )]

)
where O(1) is the canonical line bundle on P (NXY ). Now, assume that Y = M is

non-singular. We know that the Fulton class of X is de�ned by cF (X) = c(TM |X) ∩

s(X,M) ∈ A∗(X).

We have already commented on the generalization of the Milnor class to an

arbitrary constructible function due to Schürmann. Such a de�nition produces the

Fulton class of X relative to a constructible function α on M which is given by

c(NXM)−1 ∩ ι∗(c∗(α)), where ι∗ is the Gysin homomorphism. Thus, given a cons-

tructible function α on M , we de�ne the Segre class of X in M relative to α as the



following element in A∗X

s(X ⊂M ;α) = η∗

(∑
i≥0

c1

(
OP(NXM)(1)

)i ∩ η∗(c(TM |X)−1 ∩ ι∗c∗(α))

)
,

where c∗ represents the MacPherson class. When there is no ambiguity in relation to

the variety M , we shall denote s(X ⊂M ;α) only by s(X;α).

Remark 4.0.1 For any vector bundle E of rank e+ 1 on X and for any β ∈ A∗(X),

we have

si(E) ∩ β = b∗

(
c1

(
OP (E)(1)

)e+i ∩ b∗(β)
)
,

where P (E) is the projective bundle of lines in E, b is the projection from P (E) to

X and OP (E)(1) denotes the canonical line bundle on P (E). Since NXM is a vector

bundle on X, it follows that

s(X ⊂M ;α) = c(NXM)−1 · c(TM |X)−1 ∩ ι∗c∗(α),

for all constructible function α on M . In this case, we are making E = NXM and

β = c(TM |X)−1 ∩ ι∗c∗(α).

Motivating us to de�ne a certain type of Fulton class with respect to a arbitrary

constructible function.

De�nition 4.0.2 Given a constructible function α on M , we de�ne the Fulton class

of X relative to α as

cF (X ⊂M ;α) = c(TM |X) ∩ s(X ⊂M ;α).

When there is no ambiguity in relation to the varietyM , we shall denote cF (X ⊂

M ;α) only by cF (X;α). In this way, we have

cF (X ⊂M ;α) = c(TM |X) ∩ s(X ⊂M ;α)

= c(TM |X) ∩ η∗

(∑
i≥0

c1

(
OP(NXM)(1)

)i ∩ η∗(c(TM |X)−1 ∩ ι∗c∗(α))

)
= c(TM |X)c(NXM)−1c(TM |X)−1 ∩ ι∗c∗(α)

= c(NXM)−1 ∩ ι∗c∗(α).

This shows that De�nition 4.0.2 coincides with the de�nition of Fulton class relative

to a construtible function due to Schürmann.

The next result shows a relevant property of the Segre class presented above.
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Proposition 4.0.3 Let X1 and X2 be schemes which can be imbedded as subshemes

of nonsingular varieties M1 and M2, respectively. For each i = 1, 2, consider αi a

constructible function on Mi. Then, we get

s(X1 ×X2;α1 ⊗ α2) = s(X1;α1)× s(X2;α2).

Proof. For each i = 1, 2, let X̃i be the exceptional divisor of the blow-up of Mi along

Xi, with projection ηi : X̃i −→ Xi. Set η = η1× η2. By de�nition, s(X1×X2;α1⊗α2)

is equals to

η∗

(∑
i≥0

c1 (O(1))i ∩ η∗(c(TM |X1×X2)
−1 ∩ (ι1 × ι2)∗ c∗(α1 ⊗ α2))

)
whereM denotes the productM1×M2 andO(1) = OP(NX1×X2

M)(1). Using the Theorem

3.1.1 and Example 1.5.10, it follows that s(X1 ×X2;α1 ⊗ α2) is equals to

η∗

(∑
i≥0

c1 (O(1))i ∩ η∗(c(TM |X1×X2)
−1 ∩ (ι∗1c∗(α1)× ι∗2c∗(α2)))

)
.

Note that TM |X1×X2 = TM1|X1 ⊕ TM2|X2 . Thus, s(X1 ×X2;α1 ⊗ α2) is equals to

η∗

(∑
i≥0

c1 (O(1))i ∩ η∗(c(TM1|X1 ⊕ TM2|X2)
−1 ∩ (ι∗1c∗(α1)× ι∗2c∗(α2)))

)
.

With a similar argument that we use in the proof of Proposition 3.1.3, we get c(TM1|X1⊕

TM2|X2)
−1∩(ι∗1c∗(α1)× ι∗2c∗(α2)) = (c(TM1|X1)

−1 ∩ ι∗1c∗(α1))×(c(TM2|X2)
−1∩ι∗2c∗(α2)).

Using successively the Example 1.5.11, s(X1 ×X2;α1 ⊗ α2) is equals to

η∗

(∑
i≥0

(
c1

(
OP(NX1

M1)(1)
)i
∩ η1

∗(c(TM1|X1)
−1 ∩ ι∗1c∗(α1))

)
×

×
(
c1

(
OP(NX2

M2)(1)
)i
∩ η2

∗(c(TM2|X2)
−1 ∩ ι∗2c∗(α2))

))
.

Lastly, by Proposition 1.5.4(b), it follows that

s(X1 ×X2;α1 ⊗ α2)

= (η1)∗

(∑
i≥0

(
c1

(
OP(NX1

M1)(1)
)i
∩ η1

∗(c(TM1|X1)
−1 ∩ ι∗1c∗(α1))

))
×

×(η2)∗

(∑
i≥0

(
c1

(
OP(NX2

M2)(1)
)i
∩ η2

∗(c(TM2|X2)
−1 ∩ ι∗2c∗(α2))

))
= s(X1;α1)× s(X2;α2).

�

We can use the above proposition to inductively show the following result.

54



Corollary 4.0.4 Let X1, · · · , Xr be schemes which can be imbedded as subshemes of

nonsingular varieties M1, · · · ,Mr, respectively. For each i = 1, . . . , r, consider αi a

constructible function on Mi. Then

s(X1 × · · · ×Xr;α1 ⊗ · · · ⊗ αr) = s(X1;α1)× · · · × s(Xr;αr).

Proposition 4.0.5 Consider f : M ′ −→ M a proper and �at morphism of non-

singular schemes, X ⊂M a closed subscheme, X ′ = f−1(X) the inverse image scheme,

g : X ′ −→ X the induced morphism. Given a constructible function α′ on M ′, set

α = f∗α
′. Then

g∗(s(X ⊂M ;α)) = c(NX′M
′)−1c(f ∗(TM)|X′)−1 ∩ ι′∗c∗(α′).

Proof. Let B be the blow-up of M along X and let B′ be the blow-up of M ′ along X ′.

Denote by X̃ the exceptional divisor in B with projection η : X̃ −→ X, and denote by

X̃ ′ the exceptional divisor in B′ with projection η′ : X̃ ′ −→ X ′. Consider F : B′ −→ B

the induced morphism such that F ∗X̃ = X̃ ′ and consider G the induced morphism

from X̃ ′ to X̃. Moreover, let O(1) be the canonical line bundle on X̃. In this way,

G∗O(1) is the canonical line bundle on X̃ ′. Let us look at the following commutative

diagram:

G∗O(1) // X̃ ′ G //

η′

��

X̃

η

��

O(1)oo

X ′
g //

ι′

��

X

ι
��

M ′ f //M

that is, g ◦ η′ = η ◦G and f ◦ ι′ = ι◦ g. Below we have a sequence of equalities in which

we use several times the commutativity of the previous diagram and the projection
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formula:

g∗(s(X ⊂M ;α)) = g∗η∗

(∑
i≥0

c1 (O(1))i ∩ η∗(c(TM |X)−1 ∩ ι∗c∗(α))

)

= g∗η∗

(∑
i≥0

c1 (O(1))i ∩ η∗(c(ι∗(TM))−1 ∩ ι∗c∗(f∗α′))

)

= g∗η∗

(∑
i≥0

c1 (O(1))i ∩ η∗(ι∗(TM))−1 ∩ ι∗f∗c∗(α′))

)

= g∗η∗

(∑
i≥0

c1 (O(1))i ∩ η∗(c(ι∗(TM))−1 ∩ g∗ι′∗c∗(α′))

)

= g∗η∗

(∑
i≥0

c1 (O(1))i ∩ η∗g∗(c(g∗ι∗(TM))−1 ∩ ι′∗c∗(α′))

)

= g∗η∗

(∑
i≥0

c1 (O(1))i ∩G∗η′∗(c(ι
′∗f ∗(TM))−1 ∩ ι′∗c∗(α′))

)

= η′∗

(∑
i≥0

c1 (G∗O(1))i ∩ η′∗(c(f ∗(TM)|X′)−1 ∩ ι′∗c∗(α′))

)
= c(NX′M

′)−1c(f ∗(TM)|X′)−1 ∩ ι′∗c∗(α′).

�

56



Capítulo 5

Apêndice A

5.1 Algebraic sets

Let us denote by k the �eld of real numbers R or the �eld of complex numbers

C. As references we cite [Milnor] and [Suwa2].

A subset V ⊂ kn is called an algebraic set if V is the locus of common seros

of some collection of polynomial functions on kn. Let I(V ) ⊂ k[x1, . . . , xn] be the

ideal consisting of those polynomials which vanish throughout V . By the Hilbert basis

theorem, we know that I(V ) is �nitely generated. A non-vacuous algebraic set V is

called variety or an irreducible algebraic set if it cannot be expressed as the union of

two proper algebraic subset. One has that, V is irreducible if and only if I(V ) is a

prime ideal.

Given an irreducible algebraic set V , the integral domain k[x1, . . . , xn]/I(V ) is

called the �eld of rational functions on V . Consider f1, . . . , fk ∈ k[x1, . . . , xn] which

span the ideal I(V ) and, for each x ∈ V , consider the k×n matrix (∂fi/∂xj) evaluated

at x. Let r be the largest rank which this matrix attains at any point of V . In this

way, a point x ∈ V is called non-singular if the matrix (∂fi/∂xj) attains its maximal

rank r at x; and singular if rank(∂f(x)/∂xi) < r. Note that, the set of all singular

points of V forms a proper algebraic subset of V .

Now let us de�ne an equivalence relation in the set of subsets of kn. Let p ∈ kn.

Given A and B subsets of kn, one de�nes A ∼p B if there is a neighborhood U of p



such that A ∩ U = B ∩ U . The equivalence class represented by the set A is denoted

by (A, p) or, simply, A. Moreover, consider two functions f, g : kn −→ km: f and g

are equivalent if there exists a neighborhood U of p such that f |U = g|U . This is an

equivalence relation. The equivalence class represented by the function f is denoted by

f : (kn, p) −→ km. In this case, one says that f : (kn, p) −→ km is a germ of function

at p. When f(p) = q, it is denoted by f : (kn, p) −→ (km, q).

Analogously, we may de�ne analytic sets, taking analytic functions instead poly-

nomial functions.

5.2 Sheaves and schemes

The references are [H] and [G-W].

Let X be a topological space. A presheaf F on X consist of the: for every open

set U ofX a set F(U); and for each pair of open set U ⊆ V a map ρVU : F(V ) −→ F(U),

called restriction map, such that

(1) ρUU = idF(U) for all open set U ⊆ X,

(2) for U ⊆ V ⊆ W open sets of X, ρWU = ρVU ◦ ρWV .

Let F1 and F2 be presheaves on X. A morphism of presheaves ϕ : F1 −→ F2 is a

family of maps ϕ(U) : F1(U) −→ F2(U) for all U ⊆ V open, such that for all pairs of

open sets U ⊆ V in X the following diagram commutes

F1(V )
ϕ(V ) //

ρVU
��

F2(V )

ρVU
��

F1(U)
ϕ(U)

// F2(U)

A presheaf F is called a sheaf if for all open sets U in X and every open covering

U = ∪iUi the following conditions hold

(a) Given s, s′ ∈ F(U) with ρUUi
(s) = ρUUi

(s′) for all i, one has s = s′.

(b) Given si ∈ F(Ui) for all i such that ρUUi∩Uj
(si) = ρUUi∩Uj

(sj) for all i, j, then there

is an s ∈ F(U) such that ρUUi
(s) = si.
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A morphism of sheaves is a morphism of presheaves. In an analogous way, one de�nes

the notion of a sheaf of abelian groups, a sheaf of rings, a sheaf of modules, or a sheaf

of algebras. If F is a presheaf on X, and if x is a point of X, we de�ne the stalk Fx of

F at x to be the direct limit of the groups F(U) for all open sets U containing x, via

the restriction maps ρ.

Example 5.2.1 Let X be a complex manifold. Denote by OX the sheaf of holomorphic

functions on X de�ned as follows: Given an open set U in X one has

OX(U) = {f : U −→ C | f is holomorphic}.

A ringed space is a pair (X,OX), where X is a topological space and OX is a sheaf

of (commutative) rings on X. Let (X,OX) and (Y,OY ) be ringed spaces. One de�nes

a morphism of ringed spaces (X,OX) −→ (Y,OY ) as a pair (f, f#), where f : X −→ Y

is a continuous map and f# : OY −→ f∗OX is a morphism of sheaves of rings on Y .

The sheaf f∗OX is given by f∗OX(U) = OX(f−1(U)) for all open set U in Y . Moreover,

a locally ringed space is a ringed space (X,OX) such that for all x ∈ X the stalk OX,x
is a local ring. A morphism of locally ringed space (X,OX) −→ (Y,OY ) is a morphism

of ringed spaces (f, f#) such that for all x ∈ X the induced homomorphism on stalks

f#
x : OY,f(x) −→ OX,x is a local ring homomorphism. An isomorphism of locally ringed

spaces is a morphism with a two-sided inverse.

Let (X,OX) be a ringed space. An OX-module is a sheaf F on X, such that for

each open set U ⊆ X, the group F(U) is an OX(U)-module, and for each inclusion of

open sets U ⊆ V , the restrition map F(V ) −→ F(U) is compatible with the module

structures.

For any ring A, one can associate the topological space SpecA, which is the set

of all prime ideals of A equipped with the so-called Zariski topology. One can also

de�ne OSpecA on SpecA. Given an open set U ⊆ SpecA, consider OSpecA(U) the set of

functions s : U −→
∐

p∈U Ap, such that s(p) ∈ Ap for each p, and such that s is locally

a quotient of elements of A. Note that, OSpecA de�nes a sheaf of rings. Moreover,

(SpecA,OSpecA) is a locally ringed space, called the a�ne scheme.

A scheme is a locally ringed space (X,OX) which admits an open covering X =⋃
i∈I Ui such that all locally ringed spaces (Ui,OX |Ui

) which are isomorphic to a�ne

schemes. A morphism of schemes is a morphism of locally ringed spaces.
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5.3 Whitney strati�cation

Let V be a complex analytic variety V of dimension n in a complex manifold M .

An analytic strati�cation of V is a locally �nite family (Vα)α of non-singular analytic

subspaces of V , which are called strata, such that:

(1) The family is a partition of V .

(2) For each Vα, the closures in V of both Vα and Vα\Vα are analytic in V .

(3) For each pair (Vα, Vβ) such that Vα ∩ Vβ 6= ∅ one has Vα ⊂ Vβ.

A Whitney strati�cation is a strati�cation (Vα)α that satis�es the following conditions,

known as the Whitney conditions (a) and (b), for every pair (Vα, Vβ) such that Vα ⊂ Vβ.

Given y ∈ Vα, consider xi ∈ Vβ a sequence converging to y, and yi ∈ Vα another

sequence that also converges to y. Suppose these sequences are such that the sequence

of secant lines li = xiyi also converges to some limiting line l, and the tangent planes

TxiVβ converges to some limiting plane τ . The Whitney conditions (a) and (b) are the

following:

(a) The limit space τ contains the tangent space of the stratum Vα at y, that is,

TyVα ⊂ τ .

(b) The limit space τ contains all the limits of secants, that is, l ⊂ τ .

There are some interesting facts about a Whitney strati�cation. Among them, we

have: Every closed analytic subset of an analytic manifold admits a Whitney strati�ca-

tion; Whitney strati�ed spaces can be triangulated compatibly with th stratifacation;

and Whitney strati�cations are locally topological trivial along the strata.

5.4 Chern-Weil Theory

The main references in this section are [Chern] and [Milnor-Stashe�].

Let E be a complex r-vector bundle on a n-dimensional smooth manifold M .

Denote by T ∗CM = T ∗M ⊗ C the complexi�ed dual tangent bundle of M , Ω1(M) the

module of smooth sections of T ∗CM and Γ(E) the module of smooth sections of E.
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De�nition 5.4.1 A connection π on E is a C-linear map ∇ : Γ(E) −→ Ω1(M)⊗Γ(E)

satisfying Leibnitz' rule

∇(fs) = df ⊗ s+ f∇(s)

where s ∈ Γ(E) and f : M −→ C is smooth.

Let s = s1, ..., sr : U −→ E be a frame, where U is open subset in M . Given

a connection ∇ on E, we can decompose ∇(si) into its components, writing ∇(si) =∑r
j=1 θijsj. The matrix θ = (θij) of 1-forms is called the connection matrix of ∇ with

repect to s.

A connection ∇ on E induces a unique C-linear function ∇ : Ω1(M)⊗ Γ(E) −→

Ω2(M)⊗Γ(E) that satis�es∇(ω⊗s) = dω⊗s−ω∧∇s for all ω ∈ Ω1(M) and s ∈ Γ(E).

The C-linear function K∇ := ∇2 is called the curvature tensor of the connection ∇.

Denote by Mn(C) the algebra consisting of all n × n complex matrices. An

invariant polynomial onMn(C) is a function P : Mn(C) −→ C, which can be expressed

as a complex polynomial in the entries of the matrix, and satis�es P (XY ) = P (Y X),

or equivalently, P (TXT−1) = P (X) for all non-singular matrix T . Note that, the trace

and determinant functions are examples of invariant polynomials. For any invariant

polynomial P , we have a well-de�ned global di�erential form, denoted by P (K∇).

Theorem 5.4.2 Given P an invariant polynomial, we have

(a) The form P (K∇) is closed, that is dP (K∇) = 0.

(b) The cohomology class [P (K)] = [P (K∇)] is independent of the connection ∇.

Given any A ∈Mn(C), let σk(A) the k-th elementary symmetric function of the eigen-

values of A. One has det(Id+ tA) = 1 + tσ1(A) + · · ·+ tnσn(A).

De�nition 5.4.3 The k-th Chern class of E is de�ned by

ck(E) :=

[
σk

(√
−1

2π
K∇

)]
∈ H2k

DR(M ;C).

The total Chern class of E is de�ned by

c(E) := 1 + c1(E) + · · ·+ cr(E) ∈ Heven
DR (M ;C).

We have expected properties, such as c(f ∗E) = f ∗c(E) for all smooth map f : M ′ −→

M ; and c(E ⊕ F ) = c(E)c(F ), known as the Whitney sum formula.
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5.5 Derived categories

Let X be a complex analytic space. One denotes by Dbc(X) the derived cate-

gory of bounded, constructible complexes of sheaves of C-vector spaces on X. Given

F •, the shifted complex F •[l] is de�ned by (F •[l])kF k+l with di�erential given by

dk[l] = (−1)ldk+l. For any F • = Dbc(X) and p ∈ X, one denotes by Hk(F •)p the stalk

cohomology of F • at p, and thus, the Euler characteristic of F • at p is given by

χ(F •)p =
∑
k

(−1)k dimCHk(F •)p.

Moreover, the Euler characteristic of X with coe�cients in F •, denoted by χ(X,F •),

is given by

χ(X,F •) =
∑
k

(−1)k dimCHk(X,F •)

where H•(X,F •) denotes the hypercohomology groups of X with coe�cients in F •.

Now, consider S a Whitney strati�cation of X. Given p ∈ S, set χ(F •S) := χ(F •)p.

Then, we have

χ(X,F •) =
∑
S∈S

χ(F •S)χ(S).
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